Existence and Global Behavior of Decaying Solutions of a Nonlinear Elliptic Equation

Arij Bouzelmate, Mohamed El Hathout
Department of Mathematics
Faculty of Sciences
University Abdelmalek Essaadi
B.P. 2121, Tetouan
Morocco

Abstract: - This paper is devoted to study the following radial equation

$$
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+\frac{N-1}{r}\left|u^{\prime}\right|^{p-2} u^{\prime}+\alpha|u|^{q-1} u+\beta r\left(|u|^{q-1} u\right)^{\prime}=0, \quad r>0 .
$$

where $p>2, q>1, N \geq 1, \alpha>0$ and $\beta>0$.
Our purpose is to give existence results of decaying solutions of the above equation and their asymptotic behavior near infinity. The study depends strongly of the sign of $N \beta-\alpha$ and the comparison between $\frac{\alpha}{q \beta}, \frac{p}{q+1-p}$ and $\frac{N-p}{p-1}$. More precisely, we prove that if $N \beta-\alpha>0$, there is a positive solution u which has one of the following behaviors near infinity:
(i) $u(r) \underset{+\infty}{\sim} L r^{-\frac{\alpha}{q \beta}}$, where $L>0$.
$(i i) u(r) \underset{+\infty}{\sim}\left(\left(\frac{p-1}{q \beta}\right)(q+1-p)\left(\frac{N-p}{p-1}-\frac{\alpha}{q \beta}\right)\left(\frac{\alpha}{q \beta}\right)^{p-1}\right)^{\frac{1}{q+1-p}} r^{-\frac{\alpha}{q \beta}}(\ln r)^{\frac{1}{q+1-p}}$.
$($ iii $) u(r) \underset{+\infty}{\sim}\left(\frac{(p-1)\left(\frac{p}{q+1-p}\right)^{p-1}\left(\frac{N-p}{p-1}-\frac{p}{q+1-p}\right)}{\alpha-q \beta \frac{p}{q+1-p}}\right)^{\frac{1-p}{q+1-p}} r^{\frac{-p}{q+1-p}}$.

Key-Words: - Porous medium equation; fast diffusion equation; radial self-similar solutions; shooting method; decaying solutions; energy function.
Received: June 20, 2020. Revised: November 19, 2020. Accepted: December 3, 2020. Published: December 30, 2020.

1 Introduction and Main Results

The aim of this paper is to investigate the structure of positive radial solutions to

$$
\begin{equation*}
\Delta_{p} u+\alpha|u|^{q-1} u+\beta x . \nabla\left(|u|^{q-1} u\right)=0, \quad x \in \mathbb{R}^{N} \tag{1}
\end{equation*}
$$

where $p>2, q>1, N \geq 1, \alpha>0$ and $\beta>0$.
As usual $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the $p-$ laplacien operator.
The idea of this work comes from the study of radial self-similar solutions to the following parabolic equation

$$
\begin{equation*}
v_{t}=\Delta_{p} v^{m} \quad \text { in } \quad \mathbb{R}^{N} \times(0,+\infty) \tag{2}
\end{equation*}
$$

where $p>2$ and $0<m<1$.
When $p=2$, this equation becomes the porous medium equation, it appears in many physical models and it has been treated extensively in the literature, see [25] and [26]. When $m>1$, it is the slow diffusion equation, when $0<m<1$ it is the fast diffusion equation. When $m=1$, equation (2) reduce to the heat equation. See for example works of [1] , [2], [3], [4], [7], [8], [9], [14], [15] and [21].
The radial self-similar solution to the parabolic equation (2) are the form

$$
\begin{equation*}
v(x, t)=t^{-\alpha} W\left(t^{-\beta}|x|\right) \tag{3}
\end{equation*}
$$

Where

$$
\begin{equation*}
\alpha=\frac{\beta p-1}{1-m(p-1)} \tag{4}
\end{equation*}
$$

and W is a radial positive solution which satisfies

$$
\begin{equation*}
\Delta_{p} W^{m}(r)+\alpha W(r)+\beta r W^{\prime}(r)=0, \quad r>0 \tag{5}
\end{equation*}
$$

For simplicity in the notation, we set $u=W^{m}$ and $q=\frac{1}{m}$ in (5), we obtain

$$
\begin{equation*}
\Delta_{p} u+\alpha u^{q}+\beta r\left(u^{q}\right)^{\prime}=0, \quad r>0 \tag{6}
\end{equation*}
$$

The question of the existence of a self-similar of equation (2) arises. We will prove that (2) admits a radial positive self-similar solution v if $\frac{\alpha}{\beta}<N$ and $\frac{\alpha}{q \beta}<\frac{p}{q+1-p}$.
To obtain this result, we carry out a careful analysis of radial solutions of equation (11). Many authors have studied equation (11). If $p=2, \alpha=1$ and $\beta=0$, the first study is due to Emden-Fowler, see for example [10], [11] and [12]). He proved the existence results and give a classification of entire radial solutions. In the case $p=2, \alpha>0$ and $\beta>0$, equation (11) was studied by [18], [19], and [20]. When $p>2, \alpha=1$ and $\beta=0$, the first results are due to Ni and Serrin
[23]. Guedda and Veron [16] studied the existence of entire solutions in radial case. The non radial case was investigated by Bidaut- Veron and Pohozaev [5]. When $p>1, \alpha>0$ and $\beta=1$, equation (1) was studied by [22]. In the present work, we are interested in radial solutions of equation (11), we will study the following initial value problem.
Problem (P): Find a function u defined on $[0,+\infty[$ such that $\left|u^{\prime}\right|^{p-2} u^{\prime}$ is in $C^{1}([0,+\infty[)$ and

$$
\begin{gather*}
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+\frac{N-1}{r}\left|u^{\prime}\right|^{p-2} u^{\prime}+\alpha|u|^{q-1} u+\beta r\left(|u|^{q-1} u\right)^{\prime}=0 \tag{7}\\
u(0)=a>0, \quad u^{\prime}(0)=0 \tag{8}
\end{gather*}
$$

By reducing the problem (P) to a fixed point for a suitable integral operator see (for example [6]), we prove that for each $a>0$, the problem (P) has a unique global solution $u(., a, \alpha, \beta)$.
We focus our study to the case $N \beta-\alpha \geq 0$. If $N \beta-$ $\alpha=0$ and $q \geq p-1$, we find explicit solution of problem (P)
$u(r, a)= \begin{cases}a e^{\frac{-(p-1)}{p} \beta^{\frac{1}{p-1}} r^{\frac{p}{p-1}}} & \text { if } q=p-1 \\ \left(a^{\frac{p-1-q}{p-1}}+\frac{q+1-p}{p} \beta^{\frac{1}{p-1}} r^{\frac{p}{p-1}}\right)^{\frac{-(p-1)}{q+1-p}} & \text { if } q>p-1 .\end{cases}$
If $N \beta-\alpha=0$ and $q<p-1$, the solution $u(r, a)$ has compact support.
If $N \beta-\alpha>0$, we prove that $u(r, a)$ is a decaying solution for each $a>0$, i.e it is strictly positive and strictly decreasing on $(0,+\infty)$.
We are interested also to give asymptotic behavior of decaying solutions of problem (P). For this purpose, let us represent equation (7) as an equivalent form.
For any real c, we set

$$
\begin{equation*}
v_{c}(t)=r^{c} u(r) \text { where } r>0 \text { and } t=\ln (r) \tag{9}
\end{equation*}
$$

Then, v_{c} satisfies
$w_{c}^{\prime}(t)+A_{c} w_{c}(t)+\alpha e^{K_{c} t}\left|v_{c}\right|^{q-1} v_{c}(t)+q \beta e^{K_{c} t}\left|v_{c}\right|^{q-1} h_{c}(t)=0$
where

$$
\begin{gather*}
w_{c}(t)=\left|h_{c}\right|^{p-2} h_{c}(t) \tag{10}\\
h_{c}(t)=v_{c}^{\prime}(t)-c v_{c}(t)=r^{c+1} u^{\prime}(r) \tag{12}\\
A_{c}=N-p-c(p-1) \text { and } K_{c}=c(p-1-q)+p \tag{13}
\end{gather*}
$$

We remark that three critical values of the parameter c will be involved, $\frac{\alpha}{q \beta}, \frac{N-p}{p-1}$ and $\frac{p}{q+1-p}$. These values play an important role in the study of asymptotic behavior of positive solution of problem (P). The main results are the following.

Theorem 1.1. Let $a>0$. Then problem (P) has a unique global solution $u(., a, \alpha, \beta)$. Moreover,

$$
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}(0)=\frac{-\alpha a^{q}}{N}
$$

Theorem 1.2. Assume $\frac{\alpha}{\beta}<N$. Let u be a solution of problem (P). Then, u is a decaying solution and has one of the following asymptotic behaviors.
(i) If $\frac{\alpha}{q \beta}<\frac{p}{q+1-p}$,

$$
\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{q \beta}} u(r)=L_{1}>0
$$

and

$$
\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{q \beta}+1} u^{\prime}(r)=\frac{-\alpha}{q \beta} L_{1}<0
$$

(ii) If $\frac{\alpha}{q \beta}=\frac{p}{q+1-p}$,
$\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{q \beta}} u(r)(\ln (r))^{\frac{-1}{q+1-p}}=$
$\left(\left(\frac{p-1}{q \beta}\right)(q+1-p)\left(\frac{N-p}{p-1}-\frac{\alpha}{q \beta}\right)\left(\frac{\alpha}{q \beta}\right)^{p-1}\right)^{\frac{1}{q+1-p}}$
(iii) If $\frac{\alpha}{q \beta}>\frac{p}{q+1-p}$,

$$
\begin{aligned}
& \lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}} u(r)= \\
& \left(\frac{(p-1)\left(\frac{p}{q+1-p}\right)^{p-1}\left(\frac{N-p}{p-1}-\frac{p}{q+1-p}\right)}{\alpha-q \beta \frac{p}{q+1-p}}\right)^{\frac{1}{q+1-p}}
\end{aligned}
$$

and
$\lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}+1} u^{\prime}(r)=$
$\frac{-p}{q+1-p}\left(\frac{(p-1)\left(\frac{p}{q+1-p}\right)^{p-1}\left(\frac{N-p}{p-1}-\frac{p}{q+1-p}\right)}{\alpha-q \beta \frac{p}{q+1-p}}\right)$
Now, we consider the problem

$$
(Q)\left\{\begin{array}{l}
v_{t}=\Delta_{p} v^{m} \quad \text { in } \quad \mathbb{R}^{N} \times(0,+\infty) \\
v(0,1)=b
\end{array}\right.
$$

where $p>2, N \geq 1,0<m<\frac{1}{p-1}$ and $b>0$.
Theorem 1.3. Assume $0<\frac{\alpha}{\beta}<N$ and $\frac{\alpha}{q \beta}<$ $\frac{p}{q+1-p}$. Then for every $b>0$, problem
(Q) admits a radial strictly positive self-similar solution $U_{b}(x, t)=t^{-\alpha} u^{\frac{1}{m}}\left(t^{-\beta}|x|\right)$, where $\alpha=$ $\frac{\beta p-1}{1-m(p-1)}$ and u is solution of problem (P). Moreover, there exists $L(b)>0$ such that

$$
\lim _{t \rightarrow 0^{+}} U_{b}(x, t)=L(b)|x|^{\frac{-\alpha}{\beta}} \quad \text { for each } x \neq 0
$$

The paper is organized as follows. Section 2 is devoted to existence and uniqueness of global solutions of problem (P), more precisely we give the proof of Theorem 1.1. In section 3, we present fundamental properties of solution u of problem (P) and we study also the monotonicity and behavior of $r^{c} u(r)$ where c is a positive constant that we compare with the values $\frac{\alpha}{q \beta}, \frac{N-p}{p-1}$ and $\frac{p}{q+1-p}$. In section 4 we prove existence of decaying solutions of problem (P) and we describe their asymptotic behavior as $r \rightarrow+\infty$ in the three cases, $\frac{\alpha}{q \beta}<\frac{p}{q+1-p}, \frac{\alpha}{q \beta}=\frac{p}{q+1-p}$ and $\frac{\alpha}{q \beta}>\frac{p}{q+1-p}$. The obtained results prove the Theorem 1.2. Finally, in section 5 we give the proof of Theorem 1.3 by applying the obtained results in the previous sections related to the parabolic equation (2).

2 Existence of Global Solutions

In this section, we establish the existence of global solutions of problem (P).

Theorem 2.1. Let $a>0$. Then problem (P) has a unique global solution $u(., a, \alpha, \beta)$. Moreover,

$$
\begin{equation*}
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}(0)=\frac{-\alpha a^{q}}{N} \tag{14}
\end{equation*}
$$

Proof. The proof will be done in three steps.
$\frac{1}{q+1-p}$ Step 1: Existence of a local solution.
Multiply equation (7) by r^{N-1}, we obtain

$$
\begin{equation*}
\left(r^{N-1}\left|u^{\prime}\right|^{p-2} u^{\prime}+\beta r^{N}|u|^{q-1} u\right)^{\prime}=(\beta N-\alpha) r^{N-1}|u|^{q-1} u . \tag{15}
\end{equation*}
$$

Integrating (15) twice from 0 to r and taking into account (8), we see that problem (P) is equivalent to the equation

$$
\begin{equation*}
u(r)=a-\int_{0}^{r} G(F[u](s)) d s \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
G(s)=|s|^{(2-p) /(p-1)} s, \quad s \in \mathbb{R} \tag{17}
\end{equation*}
$$

and the nonlinear mapping F is given by the formula

$$
\begin{align*}
F[u](s)= & \beta s|u|^{q-1} u(s)+ \\
& (\alpha-\beta N) s^{1-N} \int_{0}^{s} \sigma^{N-1}|u|^{q-1} u(\sigma) d \sigma . \tag{18}
\end{align*}
$$

Now we consider for $a>M>0$, the complete metric space

$$
\begin{equation*}
E_{a, M, R}=\left\{\varphi \in C([0, R]):\|\varphi-a\|_{0} \leq M\right\} . \tag{19}
\end{equation*}
$$

Next we define the mapping Ψ on $E_{a, M, R}$ by

$$
\begin{equation*}
\Psi[\varphi](r)=a-\int_{0}^{r} G(F[\varphi](s)) d s \tag{20}
\end{equation*}
$$

Claim 1. Ψ maps $E_{a, M, R}$ into itself for some small M and $R>0$.
Obviously $\Psi[\varphi] \in C([0, R])$. From the definition of the space $E_{a, M, R}, \varphi(r) \in[a-M, a+M]$, for any $r \in[0, R]$. Simple calculations show that for small $M, F[\varphi]$ has a constant sign in $[0, R]$ for every $\varphi \in$ $E_{a, M, R}$. More precisely,

$$
\begin{equation*}
F[\varphi](s) \geq K s \quad \text { for all } s \in[0, R], \tag{21}
\end{equation*}
$$

where $K=\frac{\alpha}{2 N} a^{q}$.
Taking into account that the function $r \rightarrow \frac{G(r)}{r}$ is decreasing on $(0,+\infty)$, we have

$$
\begin{aligned}
|\Psi[\varphi](r)-a| & \leq \int_{0}^{r} \frac{G(F[\varphi](s))}{F[\varphi](s)}|F[\varphi](s)| d s \\
& \int_{0}^{r} \frac{G(K s)}{K s}|F[\varphi](s)| d s
\end{aligned}
$$

for $r \in[0, R]$. On the other hand,
$|F[\varphi](s)| \leq C s$, where $C=\left[\beta+\left|\frac{\alpha}{N}-\beta\right|\right](a+M)^{q}$.
We thus get

$$
|\Psi[\varphi](r)-a| \leq \frac{p-1}{p} C K^{\frac{2-p}{p-1}} r^{\frac{p}{p-1}}
$$

for every $r \in[0, R]$. Choose R small enough such that

$$
|\Psi[\varphi](r)-a| \leq M, \quad \varphi \in E_{a, M, R} .
$$

And thereby $\Psi[\varphi] \in E_{a, M, R}$. The claim is thus proved.

Claim 2. Ψ is a contraction in some interval $\left[0, r_{a}\right]$. According to Claim 1, if r_{a} is a small enough, the space $E_{a, M, r_{a}}$ applies into itself. For such r_{a} and any $\varphi, \psi \in E_{a, M, r_{a}}$ we have

$$
|\Psi[\varphi](r)-\Psi[\psi](r)| \leq \int_{0}^{r}|G(F[\varphi](s))-G(F[\psi](s))| d s(22)
$$

where $F[\varphi]$ is given by ([I8). Next, let

$$
\Phi(s)=\min (F[\varphi](s), F[\psi](s)) .
$$

As a consequence of estimate (21), we have

$$
\Phi(s) \geq K s \quad \text { for } 0 \leq s \leq r<r_{a}
$$

and then

$$
\begin{align*}
|G(F[\varphi](s))-G(F[\psi](s))| & \leq \frac{G(\Phi(s))}{\Phi(s)}|F[\varphi](s)-F[\psi](s)| \\
& \leq \frac{G(K s)}{K s}|F[\varphi](s)-F[\psi](s)| . \tag{23}
\end{align*}
$$

Moreover,

$$
\begin{equation*}
|F[\varphi](s)-F[\psi](s)| \leq C^{\prime}| | \varphi-\psi \|_{0} s \tag{24}
\end{equation*}
$$

where

$$
C^{\prime}=q\left[\beta+\left|\frac{\alpha}{N}-\beta\right|\right](a+M)^{q-1} .
$$

Combining (22), (23) and (24), we have

$$
\begin{equation*}
|\Psi[\varphi](s)-\Psi[\psi](s)| \leq \frac{p-1}{p} C^{\prime} K^{\frac{2-p}{p-1}} r^{\frac{p}{p-1}}\|\varphi-\psi\|_{0} \tag{25}
\end{equation*}
$$

for any $r \in\left[0, r_{a}\right]$. Choosing r_{a} small enough, Ψ, is a contraction. This proves the claim.
The Banach Fixed Point Theorem then implies the existence of a unique fixed point of Ψ in $E_{a, M, r_{A}}$, which is a solution of (16) and, consequently, of problem (P). As usual, this solution can be extended to a maximal interval $\left[0, r_{\text {max }}\left[, 0<r_{\text {max }} \leq+\infty\right.\right.$.
Step 2: Existence of a global solution.
We define the following energy function

$$
\begin{equation*}
E(r)=\frac{p-1}{p}\left|u^{\prime}\right|^{p}+\frac{\alpha}{q+1}|u|^{q+1}(r) . \tag{26}
\end{equation*}
$$

According to equation (7), we get
$E^{\prime}(r)=-r u^{\prime 2}\left[\frac{N-1}{r^{2}}\left|u^{\prime}\right|^{p-2}+q \beta|u|^{q-1}(r)\right]$.
Since $N \geq 1$ and $\beta>0$ then E is decreasing, hence it is bounded. Consequently, u and u^{\prime} are also bounded
and the local solution constructed above can be extended to \mathbb{R}^{+}.
Step 3: $\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}(0)=\frac{-\alpha a^{q}}{N}$.
Integrating (15) between 0 and r, we get

$$
\begin{aligned}
\frac{\left|u^{\prime}\right|^{p-2} u^{\prime}}{r}= & -\beta|u|^{q-1} u(r)+ \\
& (\beta N-\alpha) r^{-N} \int_{0}^{r} s^{N-1}|u|^{q-1} u(s) d s
\end{aligned}
$$

Hence using L'Hopital's rule and letting $r \rightarrow 0$, we obtain the desired result. The proof of Theorem is complete.

3 Fundamental Properties

Proposition 3.1. Assume $N>1$. Let u be a solution of problem (P). Then,

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} u(r)=\lim _{r \rightarrow+\infty} u^{\prime}(r)=0 \tag{28}
\end{equation*}
$$

Proof. We show that $\lim _{r \rightarrow+\infty} E(r)=0$. Since $E^{\prime}(r) \leq 0$ and $E(r) \geq 0$ for all $r>0$, there exists a constant $l \geq 0$ such that $\lim _{r \rightarrow+\infty} E(r)=l \geq 0$.
Suppose $l>0$. Then, there exists $r_{1}>0$, such that

$$
\begin{equation*}
E(r) \geq \frac{l}{2} \quad \text { for } \quad r \geq r_{1} \tag{29}
\end{equation*}
$$

Now consider the function

$$
\begin{align*}
D(r)= & E(r)+\frac{N-1}{2 r}\left|u^{\prime}\right|^{p-2} u^{\prime}(r) u(r)+ \\
& \frac{q \beta(N-1)}{2(q+1)}|u|^{q+1}(r) \tag{30}
\end{align*}
$$

Then

$$
\begin{align*}
& D^{\prime}(r)=-q \beta r|u|^{q-1}(r) u^{\prime 2}- \\
& \quad \frac{N-1}{2 r}\left[\left|u^{\prime}\right|^{p}+\frac{N}{r}\left|u^{\prime}\right|^{p-2} u^{\prime} u+\alpha|u|^{q+1}(r)\right] \tag{31}
\end{align*}
$$

Since $\beta>0$, we have
$D^{\prime}(r) \leq-\frac{N-1}{2 r}\left[\left|u^{\prime}\right|^{p}+\alpha|u|^{q+1}(r)+\frac{N}{r}\left|u^{\prime}\right|^{p-2} u^{\prime} u\right]$.
Recalling that u and u^{\prime} are bounded (because E is bounded), we have

$$
\lim _{r \rightarrow+\infty} \frac{\left|u^{\prime}\right|^{p-2} u^{\prime} u(r)}{r}=0
$$

Moreover, by (26) and (29) we have
$\left|u^{\prime}\right|^{p}+\alpha|u|^{q+1}(r) \geq E(r) \geq \frac{l}{2} \quad$ for $\quad r \geq r_{1}$.

Consequently, there exist two constants $c>0$ and $r_{2} \geq r_{1}$ such that

$$
D^{\prime}(r) \leq-\frac{c}{r} \quad \text { for } \quad r \geq r_{2}
$$

Integrating this last inequality between r_{2} and r, we get

$$
D(r) \leq D\left(r_{2}\right)-c \ln \left(\frac{r}{r_{2}}\right) \quad \text { for } \quad r \geq r_{2}
$$

In particular, we obtain $\lim _{r \rightarrow+\infty} D(r)=-\infty$. Since

$$
E(r)+\frac{N-1}{2 r}\left|u^{\prime}\right|^{p-2} u^{\prime}(r) u(r) \leq D(r)
$$

we get $\lim _{r \rightarrow+\infty} E(r)=-\infty$. This is impossible, hence the conclusion.

Proposition 3.2. Let u be a solution of problem (P) and let $S_{u}:=\{r>0: u(r)>0\}$. Then $u^{\prime}(r)<0$ for any $r \in S_{u}$.
Proof. We argue by contradiction. Let $r_{0}>0$ be the first zero of u^{\prime}. Since by (14) $u^{\prime}(r)<0$ for $r \sim 0$, we have by continuity and the definition of r_{0}, there exists a left neighborhood $] r_{0}-\varepsilon, r_{0}[($ for some $\varepsilon>0)$ where u^{\prime} is strictly increasing and strictly negative, that is $\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}(r)>0$ for any $\left.r \in\right] r_{0}-\varepsilon, r_{0}[$, hence by letting $r \rightarrow r_{0}$ we get $\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}\left(r_{0}\right) \geq$ 0 . But by equation (7), we have $\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}\left(r_{0}\right)=$ $-\alpha|u|^{q-1} u\left(r_{0}\right)<0$ since $u\left(r_{0}\right)>0, u^{\prime}\left(r_{0}\right)=0$ and $\alpha>0$. This is a contradiction. The proof is complete.
Proposition 3.3. Let u be a strictly positive solution of problem (P), then u and u^{\prime} have the same behavior (28).

Proof. If $N>1$, then by Proposition 3.1, $\lim _{r \rightarrow+\infty} u(r)=\lim _{r \rightarrow+\infty} u^{\prime}(r)=0$.
If $N=1$. Let

$$
\begin{equation*}
\phi(r)=\left|u^{\prime}\right|^{p-2} u^{\prime}(r)+\beta r|u|^{q-1} u(r) \tag{32}
\end{equation*}
$$

Then by equation (7),

$$
\begin{equation*}
\phi^{\prime}(r)=(\beta-\alpha)|u|^{q-1} u(r) \tag{33}
\end{equation*}
$$

Since u is strictly positive then it is strictly decreasing. Therefore $\lim _{r \rightarrow+\infty} u(r) \in[0,+\infty[$. Suppose that, $\lim _{r \rightarrow+\infty} u(r)=L>0$. Since the energy function E given by (26) converges, then necessarily, $\lim _{r \rightarrow+\infty} u^{\prime}(r)=0$. Therefore $\lim _{r \rightarrow+\infty} \phi(r)=+\infty$.
Using L'Hopital's rule, we have

$$
\lim _{r \rightarrow+\infty} \phi^{\prime}(r)=\lim _{r \rightarrow+\infty} \frac{\phi(r)}{r}
$$

That is

$$
(\beta-\alpha) L^{q}=\beta L^{q}
$$

Therefore, $-\alpha L^{q}=0$. But This contradicts the fact that $L>0$. Hence, $\lim _{r \rightarrow+\infty} u(r)=0$.

Now for any $c>0$, define the function

$$
\begin{equation*}
E_{c}(r)=c u(r)+r u^{\prime}(r), \quad r>0 \tag{34}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
\left(r^{c} u(r)\right)^{\prime}=r^{c-1} E_{c}(r), \quad r>0 \tag{35}
\end{equation*}
$$

Hence, using (7), we have for any $r>0$ such that $u^{\prime}(r) \neq 0$,

$$
\begin{align*}
&(p-1)\left|u^{\prime}\right|^{p-2} E_{c}^{\prime}(r)=(p-1)\left(c-\frac{N-p}{p-1}\right)\left|u^{\prime}\right|^{p-2} u^{\prime}- \\
& \alpha r|u|^{q-1} u-q \beta r^{2}|u|^{q-1} u^{\prime}(r) \\
&=(p-1)\left(c-\frac{N-p}{p-1}\right)\left|u^{\prime}\right|^{p-2} u^{\prime}(r)- \\
& q \beta r|u|^{q-1} E_{\frac{\alpha}{q \beta}}(r) \tag{36}
\end{align*}
$$

Consequently, if $E_{c}\left(r_{0}\right)=0$ for some $r_{0}>0$, equation (7) gives
$(p-1)\left|u^{\prime}\right|^{p-2}\left(r_{0}\right) E_{c}^{\prime}\left(r_{0}\right)=r_{0}|u|^{q-1} u\left(r_{0}\right)[(q \beta c-\alpha)+$ $\left.(p-1) c^{p-1}\left(\frac{N-p}{p-1}-c\right) \frac{|u|^{p-q-1}\left(r_{0}\right)}{r_{0}^{p}}\right]$.

From which the sign of $E_{c}(r)$ for large r can be obtained.
Lemma 3.4. Let u be a strictly positive solution of problem (P). Then $E_{c}(r) \neq 0$ for large r in the following cases.
(i) $c=\frac{\alpha}{q \beta} \neq \frac{N-p}{p-1}$.
(ii) $c \neq \frac{\alpha}{q \beta}$ and $q \leq p-1$.
(iii) $c \neq \frac{\alpha}{q \beta}, q>p-1$ and $\lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}} u(r)=$ $+\infty$.
(iv) $c \neq \frac{N-p}{p-1}, q>p-1$ and $\lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}} u(r)=$ 0.

Proof. Assume that there exists a large r_{0} such that $E_{c}\left(r_{0}\right)=0$. Using the fact that $u>0, \lim _{r \rightarrow+\infty} u(r)=$ 0 , then according to (37) and our hypotheses, we get $E_{c}^{\prime}\left(r_{0}\right) \neq 0$ and thereby $E_{c}(r) \neq 0$ for large r.
Lemma 3.5. Assume $0<c<\frac{\alpha}{q \beta}$. Let u be a strictly positive solution of problem (P). If $q \leq p-1$ or $q>$ $p-1$ and $\lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}} u(r)=+\infty$, then $E_{c}(r)<0$ for large r and $\lim _{r \rightarrow+\infty} r^{c} u(r)=0$

Proof. We know by Lemma 3.4, that $E_{c}(r) \neq 0$ for large r. Suppose that $E_{c}(r)>0$ for large r, hence

$$
\begin{equation*}
r\left|u^{\prime}(r)\right|<c u(r) \quad \text { for large } r . \tag{38}
\end{equation*}
$$

Using this last inequality and the fact that $u>0$, we obtain according to (7)

$$
\begin{equation*}
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}(r)<u^{q}\left[(q \beta c-\alpha)+(N-1) c^{p-1} \frac{u^{p-1-q}}{r^{p}}\right] \tag{39}
\end{equation*}
$$

If $q \leq p-1$ or $q>p-1$ and $\lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}} u(r)=$ $+\infty$, we have $\lim _{r \rightarrow+\infty} \frac{u^{p-1-q}}{r^{p}}=0$. Then, $\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}(r) \underset{+\infty}{\sim}(q \beta c-\alpha) u^{q}(r)<0$. Since $u^{\prime}(r)<0$, then $\lim _{r \rightarrow+\infty}\left|u^{\prime}\right|^{p-2} u^{\prime}(r) \in[-\infty, 0[$, but this contradicts the fact that $\lim _{r \rightarrow+\infty} u^{\prime}(r)=0$. Then, $E_{c}(r)<0$ for large r and $\lim _{r \rightarrow+\infty} r^{c} u(r) \in$ $\left[0,+\infty\left[\right.\right.$. Suppose that $\lim _{r \rightarrow+\infty} r^{c} u(r)>0$, then $\lim _{r \rightarrow+\infty} r^{c+\varepsilon} u(r)=+\infty$ for $0<c+\varepsilon<\frac{\alpha}{q \beta}$. This is impossible, and therefore $\lim _{r \rightarrow+\infty} r^{c} u(r)=0$. The proof of lemma is complete.
Lemma 3.6. Assume $\frac{N-p}{p-1} \geq \frac{\alpha}{q \beta}$. Let u be a strictly positive solution of problem (P). Then $E_{\frac{\alpha}{q \beta}}(r)>0$ for any $r>0$.
Proof. We distinguish two cases.
Case 1. $\frac{N-p}{p-1}>\frac{\alpha}{q \beta}$.
We have $E_{\frac{\alpha}{q \beta}}(0)=\frac{\alpha}{q \beta} u(0)>0$. Let $r_{0}>0$ be the first zero of $E_{\frac{\alpha}{q \beta}}(r)$. Therefore $E_{\frac{\alpha}{q \beta}}(r)>0$ in $\left[0, r_{0}[\right.$, $E_{\frac{\alpha}{q \beta}}\left(r_{0}\right)=0$ and $E_{\frac{\alpha}{\alpha \beta}}^{\prime}\left(r_{0}\right) \leq 0$. But using the fact that $u\left(r_{0}\right)>0$ and $\frac{\frac{\overline{q \beta}}{N-p}}{p-1}>\frac{\alpha}{q \beta}$, we have by (37), $E_{\frac{\alpha}{q \beta}}^{\prime}\left(r_{0}\right)>0$, which is a contradiction.
Case 2. $\frac{N-p}{p-1}=\frac{\alpha}{q \beta}$.
we have by (36),

$$
\begin{equation*}
(p-1)\left|u^{\prime}\right|^{p-2} E_{\frac{\alpha}{q \beta}}^{\prime}(r)=-q \beta r|u|^{q-1} E_{\frac{\alpha}{q \beta}}(r) \tag{40}
\end{equation*}
$$

Let $r_{0}>0$. We introduce the following function

$$
\begin{equation*}
f(r)=\frac{q \beta}{p-1} \int_{r_{0}}^{r} s\left|u^{\prime}\right|^{2-p}(s)|u|^{q-1}(s) d s \tag{41}
\end{equation*}
$$

By (40), we obtain

$$
\begin{equation*}
E_{\frac{\alpha}{q \beta}}^{\prime}(r)+f^{\prime}(r) E_{\frac{\alpha}{q \beta}}(r)=0 \tag{42}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left(e^{f(r)} E_{\frac{\alpha}{q \beta}}(r)\right)^{\prime}=0 \tag{43}
\end{equation*}
$$

Integrating this last equality from r_{0} to r, we obtain

$$
\begin{equation*}
E_{\frac{\alpha}{q \beta}}(r)=E_{\frac{\alpha}{q \beta}}\left(r_{0}\right) e^{-f(r)} \quad \forall r>r_{0} . \tag{44}
\end{equation*}
$$

Since $E_{\frac{\alpha}{\alpha \beta}}\left(r_{0}\right)>0$ for any $r_{0}>0$ close to 0 , then $E_{\frac{\alpha}{\alpha \beta}}(r)>0$ for any $r>0$.
This completes the proof of lemma.
Lemma 3.7. Assume $0<\frac{N-p}{p-1}<\frac{\alpha}{q \beta}$ and $E_{\frac{\alpha}{q \beta}}(r)>0$ for large r. Let u be a strictly positive solution of problem (P). Then $E_{\frac{N-p}{p-1}}(r)>0$ for any $r>0$.
Proof. We have $E_{\frac{N-p}{p-1}}(0)>0$. Suppose that there exists $r_{0}>0$ the first zero of $E_{\frac{N-p}{p-1}}$. Then, by 37, $E_{\frac{N-p}{p-1}}^{\prime}\left(r_{0}\right)<0$. Therefore, $E_{\frac{N-p}{p-1}}^{p}(r)<0 \forall r>$ r_{0}. On the other hand, since $E_{\frac{\alpha}{\alpha \beta}}(r)>0$ for large r, then by (36), we have $E_{N-p}^{\prime}(r)<0$ for large r. Hence, $\lim _{r \rightarrow+\infty} E_{\frac{N-p}{p-1}}(r) \stackrel{p-1}{\in}[-\infty, 0[$, which implies that $\lim _{r \rightarrow+\infty} r u^{\prime}(r) \in[-\infty, 0[$, but this contradicts the fact that $\lim _{r \rightarrow+\infty} u(r)=0$. Consequently, $E_{\frac{N-p}{p-1}}(r)>0$ for any $r>0$.
Proposition 3.8. Assume $\frac{\alpha}{\beta}<N, \frac{\alpha}{q \beta}=\frac{p}{q+1-p}$ and $\lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}} u(r)=+\infty$. Let u be a strictly positive solution of problem (P). Then

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{r u^{\prime}(r)}{u(r)}=\frac{-\alpha}{q \beta} . \tag{45}
\end{equation*}
$$

Proof. Since $\frac{\alpha}{\beta}<N$ and $\frac{\alpha}{q \beta}=\frac{p}{q+1-p}$, then $\frac{N-p}{p-1}>\frac{N}{q}>\frac{\alpha}{q \beta}$, therefore using the fact that $E_{\frac{\alpha}{q_{\beta}}}(r)>0$ for any $r>0$ by lemma 3.6, we obtain

$$
\begin{equation*}
\frac{-\alpha}{q \beta} u(r)<r u^{\prime}(r)<0 \quad \text { for any } r>0 \tag{46}
\end{equation*}
$$

Let $c>0$ and

$$
\begin{equation*}
g(r)=\frac{E_{c}(r)}{u(r)}=c+\frac{r u^{\prime}(r)}{u(r)}, \quad r>0 \tag{47}
\end{equation*}
$$

then

$$
\begin{equation*}
c-\frac{\alpha}{q \beta}<g(r)<c \quad \text { for any } r>0 \tag{48}
\end{equation*}
$$

Consequently g is bounded for large r. We prove that g converges. Assume by contradiction that it oscillates, that is there exist two sequences $\left\{\eta_{i}\right\}$ and $\left\{\xi_{i}\right\}$ going to $+\infty$ as $i \rightarrow+\infty$ such that g has a local minimum in η_{i} and a local maximum in ξ_{i} satisfying $\eta_{i}<\xi_{i}<\eta_{i+1}$ and

$$
\begin{align*}
& \liminf _{r \rightarrow+\infty} g(r)=\lim _{i \rightarrow+\infty} g\left(\eta_{i}\right)=\gamma_{1}< \\
& \limsup _{r \rightarrow+\infty} g(r)=\lim _{i \rightarrow+\infty} g\left(\xi_{i}\right)=\gamma_{2} \tag{49}
\end{align*}
$$

Therefore, by (48), we have

$$
\begin{equation*}
c-\frac{\alpha}{q \beta} \leq \gamma_{1}<\gamma_{2} \leq c \tag{50}
\end{equation*}
$$

Since $g^{\prime}\left(\xi_{i}\right)=0$, then

$$
\begin{equation*}
\frac{E_{c}^{\prime}\left(\xi_{i}\right)}{u^{\prime}\left(\xi_{i}\right)}=\frac{E_{c}\left(\xi_{i}\right)}{u\left(\xi_{i}\right)}=g\left(\xi_{i}\right) . \tag{51}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} \frac{E_{c}^{\prime}\left(\xi_{i}\right)}{u^{\prime}\left(\xi_{i}\right)}=\gamma_{2} \tag{52}
\end{equation*}
$$

On the other hand, we have by (36) and the fact that $u^{\prime}(r)<0$,

$$
\begin{align*}
\frac{E_{c}^{\prime}(r)}{u^{\prime}(r)}= & \left(c-\frac{N-p}{p-1}\right)+ \\
& \frac{q \beta}{p-1} \frac{r u^{q}(r)}{\left|u^{\prime}\right|^{p-1}(r)}\left[\frac{\alpha}{q \beta}+\frac{r u^{\prime}(r)}{u(r)}\right] . \tag{53}
\end{align*}
$$

As $E_{\frac{\alpha}{q \beta}}(r)>0 \forall r>0$, then

$$
\begin{equation*}
\frac{\left|u^{\prime}(r)\right|^{p-1}}{r u^{q}(r)}<\left(\frac{\alpha}{q \beta}\right)^{p-1} r^{-p} u^{p-1-q} . \tag{54}
\end{equation*}
$$

Since $\lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}} u(r)=+\infty$, then

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{r u^{q}(r)}{\left|u^{\prime}(r)\right|^{p-1}}=+\infty \tag{55}
\end{equation*}
$$

Moreover, we have

$$
\begin{align*}
\lim _{i \rightarrow+\infty}\left(\frac{\alpha}{q \beta}+\frac{\xi_{i} u^{\prime}\left(\xi_{i}\right)}{u\left(\xi_{i}\right)}\right) & =\frac{\alpha}{q \beta}+\lim _{i \rightarrow+\infty} g\left(\xi_{i}\right)-c \\
& =\frac{\alpha}{q \beta}+\gamma_{2}-c>0 . \tag{56}
\end{align*}
$$

Then, by (53)

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} \frac{E_{c}^{\prime}\left(\xi_{i}\right)}{u^{\prime}\left(\xi_{i}\right)}=+\infty \tag{57}
\end{equation*}
$$

But this contradicts (52). Then $g(r)$ converges as $r \rightarrow$ $+\infty$, and consequently $\frac{r u^{\prime}(r)}{u(r)}$ converges also. Let $\lim _{r \rightarrow+\infty} \frac{r u^{\prime}(r)}{u(r)}=-d \leq 0$, then by (46), $0 \leq d \leq \frac{\alpha}{q \beta}$. Suppose that $d<\frac{\alpha}{q \beta}$, then

$$
\begin{equation*}
\lim _{r \rightarrow+\infty}\left(\frac{\alpha}{q \beta}+\frac{r u^{\prime}(r)}{u(r)}\right)=\frac{\alpha}{q \beta}-d>0 \tag{58}
\end{equation*}
$$

Therefore, by (53) and (55),

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{E_{c}^{\prime}(r)}{u^{\prime}(r)}=+\infty \tag{59}
\end{equation*}
$$

Using Hospital's rule, we get
$\begin{aligned} \lim _{r \rightarrow+\infty} \frac{E_{c}^{\prime}(r)}{u^{\prime}(r)}=\lim _{r \rightarrow+\infty} \frac{E_{c}(r)}{u(r)} & =\lim _{r \rightarrow+\infty}\left(c+\frac{r u^{\prime}(r)}{u(r)}\right) \\ & =c-d .\end{aligned}$
This contradicts (59). Consequently $\lim _{r \rightarrow+\infty} \frac{r u^{\prime}(r)}{u(r)}=$ $\frac{-\alpha}{q \beta}$. The proof is complete.
Proposition 3.9. Assume $\frac{\alpha}{\beta}<N, \frac{\alpha}{q \beta}=\frac{p}{q+1-p}$ and $\lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}} u(r)=+\infty$. Let u be a strictly positive solution of problem (P). Then,

- if $0<c<\frac{\alpha}{q \beta}, \lim _{r \rightarrow+\infty} r^{c} u(r)=$ $\lim _{r \rightarrow+\infty} r^{c+1} u^{\prime}(r)=0$.
- if $c>\frac{\alpha}{q \beta}, \quad \lim _{r \rightarrow+\infty} r^{c} u(r)=+\infty$ and $\lim _{r \rightarrow+\infty} r^{c+1} u^{\prime}(r)=-\infty$.
Proof. First, we show that $E_{c}^{\prime}(r) \neq 0$ for large r. If $E_{c}^{\prime}(r)=0$ for some large r, then

$$
\begin{align*}
& (p-1)\left|u^{\prime}\right|^{p-2} E_{c}^{\prime \prime}(r)=r u^{q-1}\left|u^{\prime}\right|\left[q \beta\left(\frac{\alpha}{q \beta}-c\right)-\right. \\
& q \beta(q-1) \frac{E_{\frac{\alpha}{q \beta}} E_{\frac{1}{q-1}}^{r\left|u^{\prime}\right| u}-q \beta(p-1)\left(c-\frac{N-p}{p-1}\right) \frac{E_{\frac{\alpha}{q \beta}}^{r\left|u^{\prime}\right|}+}{r}}{\left.(p-1)(N-1)\left(c-\frac{N-p}{p-1}\right) \frac{\left|u^{\prime}\right|^{p-1}}{r u^{q}} \frac{u}{r\left|u^{\prime}\right|}\right]}
\end{align*}
$$

We know by Proposition 3.8 that $\lim _{r \rightarrow+\infty} \frac{r u^{\prime}(r)}{u(r)}=$ $\frac{-\alpha}{q \beta}$, then

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{E_{\frac{1}{q-1}}(r)}{u(r)}=\frac{1}{q-1}-\frac{\alpha}{q \beta} \tag{62}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{E \frac{\alpha}{q \beta}(r)}{r\left|u^{\prime}\right|}=0 \tag{63}
\end{equation*}
$$

On the other hand, since $E_{\frac{\alpha}{q \beta}}(r)>0, \forall r>0$ (by Lemma 3.6) and $\lim _{r \rightarrow+\infty} r^{\frac{p^{q \beta}}{q+1-p}}=0$, we obtain

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\left|u^{\prime}(r)\right|^{p-1}}{r u^{q}(r)}=0 \tag{64}
\end{equation*}
$$

Therefore, using the fact that $\lim _{r \rightarrow+\infty} \frac{u(r)}{r\left|u^{\prime}\right|}=\frac{q \beta}{\alpha}$, we get

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\left|u^{\prime}\right|^{p-1}(r)}{r u^{q}(r)} \frac{u(r)}{r\left|u^{\prime}(r)\right|}=0 \tag{65}
\end{equation*}
$$

Using (62), (63) and (65), we get from (61), $E_{c}^{\prime \prime}(r) \neq$ 0 if $c \neq \frac{\alpha}{q \beta}$. Consequently, if $c \neq \frac{\alpha}{q \beta}$, we have $E_{c}^{\prime}(r) \neq 0$ for large r. We distinguish two cases.
Case 1. $0<c<\frac{\alpha}{q \beta}$.
We have by Lemma 3.5, $E_{c}(r)<0$ for large r and $\lim _{r \rightarrow+\infty} r^{c} u(r)=0$. If $E_{c}^{\prime}(r)<0$ for large r, then $\lim _{r \rightarrow+\infty} E_{c}(r) \in[-\infty ; 0[$, this is impossible since $\lim _{r \rightarrow+\infty} u(r)=0$ and $\lim _{r \rightarrow+\infty} r u^{\prime}(r)=0$. Therefore, $E_{c}^{\prime}(r)>0$ for large r. On the other hand, we have

$$
\begin{equation*}
\left(r^{c+1} u^{\prime}\right)^{\prime}=r^{c} E_{c}^{\prime}(r) \tag{66}
\end{equation*}
$$

Then the function $r^{c+1} u^{\prime}$ is negative and increasing for large r and therefore, using L'Hopital's rule, we obtain $\lim _{r \rightarrow+\infty} r^{c+1} u^{\prime}(r)=\lim _{r \rightarrow+\infty} r^{c} u(r)=0$.
Case 2. $c>\frac{\alpha}{q \beta}$.
We have $E_{c}(r)>0, \forall r>0$ (by Lemma 3.6). If $E_{c}^{\prime}(r)>0$ for large $\left.\left.r, \lim _{r \rightarrow+\infty} E_{c}(r) \in\right] 0 ;+\infty\right]$, this is also impossible. Therefore, $E_{c}^{\prime}(r)<0$ for large r. Hence, $\left.\left.\lim _{r \rightarrow+\infty} r^{c} u(r) \in\right] 0,+\infty\right]$ and $\lim _{r \rightarrow+\infty} r^{c+1} u^{\prime}(r) \in[-\infty, 0[$. Suppose that $-\infty<$ $\lim _{r \rightarrow+\infty} r^{c+1} u^{\prime}(r)<0$, then by L'Hopital's rule, $0<$ $\lim _{r \rightarrow+\infty} r^{c} u(r)<+\infty$.
Using logarithmic change (9), we have v_{c} and h_{c} converge, $A_{c}>0$ and $K_{c}<0$ and by letting $t \rightarrow+\infty$ in equation (10), we obtain $\lim _{t \rightarrow+\infty} w_{c}^{\prime}(t)>0$. But this contradicts the fact that w converges. Therefore $\lim _{r \rightarrow+\infty} r^{c+1} u^{\prime}(r)=-\infty$ and $\lim _{r \rightarrow+\infty} r^{c} u(r)=+\infty$. The proof is complete.
Proposition 3.10. Let u be a solution of problem (P). If there exists $c>0$ such that $r^{c} u(r)$ is
monotone for large r and $\lim _{r \rightarrow+\infty} r^{c} u(r)=d$. Then $\lim _{r \rightarrow+\infty} r^{c+1} u^{\prime}(r)=-c d$.
Proof. According to logarithmic change (9) and 34), we have

$$
\begin{equation*}
v_{c}^{\prime}(t)=r^{c} E_{c}(r) \tag{67}
\end{equation*}
$$

Then, the function $v_{c}(t)$ is monotone for large t and $\lim _{t \rightarrow+\infty} v_{c}(t)=d$. Therefore for large t_{0}, the integral $\int_{t_{0}}^{t}\left|v_{c}^{\prime}(s)\right| d s$ converges as $t \rightarrow+\infty$. Therefore, $\lim _{t \rightarrow+\infty} v_{c}^{\prime}(t)=0$. Hence, by (12) $\lim _{t \rightarrow+\infty} h_{c}(t)=$ $-c d$, that is $\lim _{r \rightarrow+\infty} r^{c+1} u^{\prime}(r)=-c d$.

4 Asymptotic Behavior at infinity

In this section we study the asymptotic behavior near infinity of positive solutions of problem (P).

Theorem 4.1. Assume $\frac{\alpha}{\beta}<N$. Then any solution of problem (P) is a decaying solution.
Proof. We have $u(0)>0$. Assume by contradiction that there exists $r_{0}>0$ such that $u\left(r_{0}\right)=0$ (where r_{0} is the first zero of u). Then, $u^{\prime}\left(r_{0}\right) \leq 0$. On the other hand, integrating (15) between 0 and r_{0}, we obtain

$$
\begin{equation*}
r_{0}^{N-1}\left|u^{\prime}\right|^{p-2} u^{\prime}\left(r_{0}\right)=(\beta N-\alpha) \int_{0}^{r_{0}} s^{N-1} u^{q}(s) d s \tag{68}
\end{equation*}
$$

The right-hand side of the previous equality is strictly positive, but this contradicts the fact that $u^{\prime}\left(r_{0}\right) \leq$ 0 . Therefore u is strictly positive and therefore it is strictly decreasing by Proposition 3.2. Hence u is a decaying solution. The theorem is proved.

Theorem 4.2. Assume $\frac{\alpha}{\beta}<N$ and $\frac{\alpha}{q \beta}<$ $\frac{p}{q+1-p}$. Let u be a solution of problem (P). Then

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{q \beta}} u(r)=L_{1}>0 \tag{69}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{q \beta}+1} u^{\prime}(r)=\frac{-\alpha}{q \beta} L_{1}<0 \tag{70}
\end{equation*}
$$

Proof. Recall by Theorem 4.1 that u is strictly positive and then it strictly decreasing. Set

$$
\begin{align*}
I(r) & =r^{\frac{\alpha}{\beta}}\left[\frac{\beta}{\alpha} u^{q}(r)+\frac{1}{\alpha r}\left|u^{\prime}\right|^{p-2} u^{\prime}(r)\right] \\
& =\frac{\beta}{\alpha} r^{\frac{\alpha}{\beta}} u^{q}\left[1-\frac{1}{\beta} \frac{\left|u^{\prime}\right|^{p-1}(r)}{r u^{q}(r)}\right] \tag{71}
\end{align*}
$$

A simple calculation gives

$$
\begin{equation*}
I^{\prime}(r)=\frac{-1}{\alpha}\left(N-\frac{\alpha}{\beta}\right) r^{\frac{\alpha}{\beta}-2}\left|u^{\prime}\right|^{p-2} u^{\prime}(r) \tag{72}
\end{equation*}
$$

Since $N>\frac{\alpha}{\beta}$ and $u^{\prime}(r)<0$, then $I^{\prime}(r)>0 \forall r>0$. Moreover, using (14), the fact that $u(0)=a>0$, we get $\lim _{r \rightarrow 0} I(r)=0$. Therefore, $I(r)>0 \forall r>$ 0 , hence $\left.\left.\lim _{r \rightarrow+\infty} I(r) \in\right] 0,+\infty\right]$ and then there exists $c>0$ such that $I(r) \geq c$ for large r. As $u^{\prime}(r)<0$, then

$$
\begin{equation*}
r^{\frac{\alpha}{\beta}} u^{q}(r) \geq \frac{\alpha}{\beta} c \quad \text { for large } r \tag{73}
\end{equation*}
$$

On the other hand, we know that by Lemma 3.4 and Lemma 3.6 that $E_{\frac{\alpha}{q \beta}}(r) \neq 0$ for large r. Then, from (73), necessarily $\left.\left.\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{q \beta}} u(r) \in\right] 0 ;+\infty\right]$. Suppose that $\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{q \beta}} u(r)=+\infty$, then necessarily $E_{\frac{\alpha}{q \beta}}(r)>0$ for large r and therefore

$$
\begin{equation*}
0<\frac{\left|u^{\prime}\right|^{p-1}(r)}{r u^{q}(r)}<\left(\frac{\alpha}{q \beta}\right)^{p-1} \frac{1}{r^{p} u^{q+1-p}(r)} \tag{74}
\end{equation*}
$$

As, $\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{q \beta}} u(r) \quad=\quad+\infty$, then $\lim _{r \rightarrow+\infty} r^{p} u^{q+1-p}(r)=+\infty$, which implies according to (74) that $\lim _{r \rightarrow+\infty} \frac{\left|u^{\prime}\right|^{p-1}(r)}{r u^{q}(r)}=0$. This leads from (71) that $I(r) \underset{+\infty}{\sim} \frac{\beta}{\alpha} r^{\frac{\alpha}{\beta}} u^{q}(r)$ and therefore $\lim _{r \rightarrow+\infty} I(r)=+\infty$. Let
$0<\sigma<\min \left(\frac{\alpha}{q \beta} ; \frac{1}{p-1}\left[\frac{\alpha}{q \beta}(p-1-q)+p\right]\right)$.

By Lemma 3.5, we obtain, $\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{q \beta}-\sigma} u(r)=0$. Then

$$
u(r) \leq r^{\sigma-\frac{\alpha}{q \beta}} \quad \text { for large } r
$$

Using this last inequality and the fact that $E_{\frac{\alpha}{q \beta}}(r)>0$ for large r, we get

$$
\begin{aligned}
& 0<I^{\prime}(r)< \\
& \frac{1}{\alpha}\left(N-\frac{\alpha}{\beta}\right)\left(\frac{\alpha}{q \beta}\right)^{p-1} r^{\sigma(p-1)+\frac{\alpha}{q \beta}(q+1-p)-p-1}
\end{aligned}
$$

Since $\sigma(p-1)+\frac{\alpha}{q \beta}(q+1-p)-p<0$, then $\lim _{r \rightarrow+\infty} I(r)$ is finite, which contradicts the fact that $\lim _{r \rightarrow+\infty} I(r)=+\infty$. Consequently, $\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{q \beta}} u(r)=$ $L_{1}>0$. Moreover, since $E_{\frac{\alpha}{q \beta}}(r) \neq 0$ for large r, then $r^{\frac{\alpha}{q \beta}} u(r)$ is monotone for large r. Therefore, by Proposition 3.10, $\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{q \beta}+1} u^{\prime}(r)=\frac{-\alpha}{q \beta} L_{1}<0$. This completes the proof.

Theorem 4.3. Assume $\frac{\alpha}{\beta}<N$ and $\frac{\alpha}{q \beta}=$ $\frac{p}{q+1-p}$. Let u be a solution of problem (P). Then $\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{q \beta}} u(r)(\ln (r))^{\frac{-1}{q+1-p}}=$
$\left(\left(\frac{p-1}{q \beta}\right)(q+1-p)\left(\frac{N-p}{p-1}-\frac{\alpha}{q \beta}\right)\left(\frac{\alpha}{q \beta}\right)^{p-1}\right)^{\frac{1}{q+1-p}}$

Proof. First we show that $\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{q \beta}} u(r)=+\infty$.
Since u is strictly positive, we introduce this following function

$$
\begin{equation*}
\varphi(r)=r^{N-1}\left|u^{\prime}\right|^{p-2} u^{\prime}(r)+\beta r^{N} u^{q}(r) \tag{77}
\end{equation*}
$$

then by (15), we get

$$
\begin{equation*}
\varphi^{\prime}(r)=(\beta N-\alpha) r^{N-1} u^{q}(r) \tag{78}
\end{equation*}
$$

Since $N \beta>\alpha$ and $u(r)>0$, then $\varphi^{\prime}(r)>0$ and as $\varphi(0)=0$, we have $\varphi(r)>0 \forall r>0$. That is, for any $r>0$,

$$
\begin{equation*}
\left|u^{\prime}\right|^{p-2} u^{\prime}(r)>-\beta r u^{q}(r) \tag{79}
\end{equation*}
$$

As $u^{\prime}(r)<0$, then for any $r>0$

$$
\begin{equation*}
u^{\prime}(r) u^{\frac{-q}{p-1}}>-\beta^{\frac{1}{p-1}} r^{\frac{1}{p-1}} \tag{80}
\end{equation*}
$$

Integrating (80) twice from r_{0} to r and taking into account $q>p-1$, we obtain

$$
\begin{align*}
& u^{\frac{p-1-q}{p-1}}(r)-u^{\frac{p-1-q}{p-1}}\left(r_{0}\right)< \\
& \frac{q+1-p}{p} \beta^{\frac{1}{p-1}}\left(r^{\frac{p}{p-1}}-r_{0}^{\frac{p}{p-1}}\right) . \tag{81}
\end{align*}
$$

Then there exists $C>0$ such that

$$
\begin{equation*}
r^{\frac{p}{q+1-p}} u(r)>C \quad \text { for large } r . \tag{82}
\end{equation*}
$$

As $\frac{\alpha}{\beta}<N$ and $\frac{\alpha}{q \beta}=\frac{p}{q+1-p}$, then $\frac{N-p}{p-1}>$ $\frac{\alpha}{q \beta}$. Hence, by Lemma 3.6, $E_{\frac{\alpha}{q \beta}}(r)>0$ for any $r>$ 0 . Consequently $\left.\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{q \beta}} u(r) \in\right] 0,+\infty$]. Suppose that $\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{q \beta}} u(r)=l>0$. Using equation (7), we get

$$
\begin{align*}
& r^{N-1}\left|u^{\prime}\right|^{p-2} u^{\prime}(r)+\beta r^{N} u^{q}(r)= \\
& (\beta N-\alpha) \int_{0}^{r} s^{N-1} u^{q}(s) d s \tag{83}
\end{align*}
$$

Then

$$
\begin{align*}
& r^{\frac{\alpha}{\beta}-1}\left|u^{\prime}\right|^{p-2} u^{\prime}(r)+\beta r^{\frac{\alpha}{\beta}} u^{q}(r)= \\
& (\beta N-\alpha) r^{\frac{\alpha}{\beta}-N} \int_{0}^{r} s^{N-1} u^{q}(s) d s . \tag{84}
\end{align*}
$$

Since
$\int_{0}^{r} s^{N-1} u^{q}(s) d s>\frac{1}{N} r^{N} u^{q}=\frac{1}{N} r^{\frac{\alpha}{\beta}} u^{q} r^{N-\frac{\alpha}{\beta}} \underset{r \rightarrow+\infty}{\longrightarrow}+\infty$ Then, using L'Hopital's rule, we obtain

$$
\begin{align*}
\lim _{r \rightarrow+\infty} \frac{\int_{0}^{r} s^{N-1} u^{q}(s) d s}{r^{N-\frac{\alpha}{\beta}}} & =\lim _{r \rightarrow+\infty} \frac{r^{N-1} u^{q}(r)}{\left(N-\frac{\alpha}{\beta}\right) r^{N-\frac{\alpha}{\beta}-1}} \\
& =\frac{\beta l^{q}}{\beta N-\alpha} \tag{85}
\end{align*}
$$

Therefore, from (84) we have

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} r^{\frac{\alpha}{\beta}-1}\left|u^{\prime}\right|^{p-2} u^{\prime}(r)=0 . \tag{86}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} r^{\frac{\frac{\alpha}{\frac{\beta}{p}-p}}{p-1}+1} u^{\prime}(r)=0 . \tag{87}
\end{equation*}
$$

Using L'Hopital's rule and the fact that $\frac{\frac{\alpha}{\beta}-p}{p-1}=$ $\frac{p}{q+1-p}$, we obtain $\lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}} u(r)=0$. But this contradicts the fact that $\lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}} u(r)=l>$
0 . Consequently, $\lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}} u(r)=+\infty$.
Using the fact that u is strictly positive and decreasing, we obtain by (36),

$$
\begin{align*}
& \frac{E_{\frac{\alpha}{q \beta}}^{\prime}(r)}{u^{\prime}}=\left(\frac{\alpha}{q \beta}-\frac{N-p}{p-1}\right)+\frac{q \beta}{p-1} \frac{r u^{q}}{\left.\left|u^{\prime}\right|\right|^{p-1}} \frac{E_{\frac{\alpha}{q \beta}}(r)}{u}= \\
& \left(\frac{\alpha}{q \beta}-\frac{N-p}{p-1}\right)+\frac{q \beta}{p-1}\left(\frac{u}{r\left|u^{\prime}\right|}\right)^{p-1} r^{p} u^{q+1-p} \frac{E_{\frac{\alpha}{q \beta}}(r)}{u} . \tag{88}
\end{align*}
$$

We introduce the following variable change

$$
\begin{equation*}
V(r)=r^{\frac{\alpha}{\alpha \beta}} u(r), \quad r>0 . \tag{89}
\end{equation*}
$$

It's easy to see by (35)that

$$
\begin{equation*}
r V^{q-p} V^{\prime}(r)=r^{p} u^{q+1-p} \frac{E_{\frac{\alpha}{q \beta}}(r)}{u} . \tag{90}
\end{equation*}
$$

Then, by (88)

$$
\begin{align*}
\frac{E_{\frac{\alpha}{q \beta}}^{\prime}(r)}{u^{\prime}} & =\left(\frac{\alpha}{q \beta}-\frac{N-p}{p-1}\right)+ \\
& \frac{q \beta}{p-1}\left(\frac{u}{r\left|u^{\prime}\right|}\right)^{p-1} r V^{q-p} V^{\prime}(r) . \tag{91}
\end{align*}
$$

Using L'Hopital's rule and proposition 3.8, we get

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{E_{\frac{\alpha}{q \beta}}^{\prime}(r)}{u^{\prime}}=\lim _{r \rightarrow+\infty} \frac{E_{\frac{\alpha}{q \beta}}(r)}{u}=\frac{\alpha}{q \beta}+\frac{r u^{\prime}}{u}=0 . \tag{92}
\end{equation*}
$$

Therefore by (91)

$$
\begin{align*}
& \lim _{r \rightarrow+\infty} r V^{q-p} V^{\prime}(r)= \\
& \frac{p-1}{q \beta}\left(\frac{N-p}{p-1}-\frac{\alpha}{q \beta}\right)\left(\frac{\alpha}{q \beta}\right)^{p-1} . \tag{93}
\end{align*}
$$

That is to say

$$
\begin{align*}
& \lim _{r \rightarrow+\infty} \frac{\left(\frac{V^{q+1-p}(r)}{q+1-p}\right)^{\prime}}{(\ln (r))^{\prime}}= \\
& \frac{p-1}{q \beta}\left(\frac{N-p}{p-1}-\frac{\alpha}{q \beta}\right)\left(\frac{\alpha}{q \beta}\right)^{p-1} . \tag{94}
\end{align*}
$$

Using L'Hopital's rule (because $\lim _{r \rightarrow+\infty} V(r)=+\infty$), we get

$$
\begin{align*}
& \lim _{r \rightarrow+\infty} \frac{V^{q+1-p}(r)}{\ln (r)}= \\
& \frac{p-1}{q \beta}(q+1-p)\left(\frac{N-p}{p-1}-\frac{\alpha}{q \beta}\right)\left(\frac{\alpha}{q \beta}\right)^{p-1} . \tag{95}
\end{align*}
$$

The result follows and the proof is complete.

Theorem 4.4. Assume $\frac{\alpha}{\beta}<N$ and $\frac{\alpha}{q \beta}>$ $\frac{p}{q+1-p}$. Let u be a solution of problem (P). Then

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}} u(r)=L_{2} \tag{96}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}+1} u^{\prime}(r)=\frac{-p}{q+1-p} L_{2}, \tag{97}
\end{equation*}
$$

where
$L_{2}=\left(\frac{(p-1)\left(\frac{p}{q+1-p}\right)^{p-1}\left(\frac{N-p}{p-1}-\frac{p}{q+1-p}\right)}{\alpha-q \beta \frac{p}{q+1-p}}\right)^{\frac{1}{q+1-p}}$.

Proof. As $\frac{\alpha}{\beta}<N$ and $\frac{\alpha}{q \beta}>\frac{p}{q+1-p}$, then $\frac{N-p}{p-1}>\frac{p}{q+1-p}$. First, we show that $E_{\frac{p}{q+1-p}}(r)>0 \forall r>0$. Let $r_{0}>0$ the first zero of $E_{\frac{p}{q+1-p}}(r)$. Then we have $E_{\frac{p}{q+1-p}}(r)>0$ $\forall r \in\left[0, r_{0}\right), E_{\frac{p}{q+1-p}}\left(r_{0}\right)=0$ and $E_{\frac{p}{q+1-p}}^{\prime q+1-p}\left(r_{0}\right) \leq 0$. Therefore using (37)

$$
\begin{align*}
& \left(q \beta \frac{p}{q+1-p}-\alpha\right)+(p-1)\left(\frac{p}{q+1-p}\right)^{p-1} \\
& \left(\frac{N-p}{p-1}-\frac{p}{q+1-p}\right) \frac{u^{p-q-1}\left(r_{0}\right)}{r_{0}^{p}} \leq 0 \tag{99}
\end{align*}
$$

Hence

$$
\begin{equation*}
r_{0}^{\frac{p}{q+1-p}} u\left(r_{0}\right) \geq L_{2} \tag{100}
\end{equation*}
$$

Where L_{2} is given by (98). On the other hand, since $u(r)>0$, then integrating (15) on $\left(0, r_{0}\right)$, we obtain

$$
\begin{align*}
& r_{0}^{N-1}\left|u^{\prime}\right|^{p-2} u^{\prime}\left(r_{0}\right)+\beta r_{0}^{N} u^{q}\left(r_{0}\right)= \\
& (\beta N-\alpha) \int_{0}^{r_{0}} s^{N-1} u^{q}(s) d s \tag{101}
\end{align*}
$$

Therefore,

$$
\begin{align*}
\beta\left(r_{0}^{\frac{p}{q+1-p}} u\left(r_{0}\right)\right)^{q} & =r_{0}^{\frac{p q}{q+1-p}-1}\left|u^{\prime}\right|^{p-1}\left(r_{0}\right)+ \\
& (\beta N-\alpha) r_{0}^{\frac{p q}{q+1-p}-N} \int_{0}^{r_{0}} s^{N-1} u^{q}(s) d s \tag{102}
\end{align*}
$$

As $E_{\frac{p}{q+1-p}}(r)>0 \forall r \in\left[0, r_{0}\right)$ and $E_{\frac{p}{q+1-p}}\left(r_{0}\right)=$ 0 , then $\left(r^{\frac{p}{q+1-p}} u(r)\right)^{\prime}>0 \forall r \in\left(0, r_{0}\right)$ and $\left|u^{\prime}\left(r_{0}\right)\right|=\frac{p}{q+1-p} \frac{u\left(r_{0}\right)}{r_{0}}$. Then,
$\beta\left(r_{0}^{\frac{p}{q+1-p}} u\left(r_{0}\right)\right)^{q} \leq$
$\left(\frac{p}{q+1-p}\right)^{p-1} r^{\frac{p q}{q+1-p}-p} u^{p-1}\left(r_{0}\right)+$
$(\beta N-\alpha) r_{0}^{\frac{p q}{q+1-p}-N} r^{\frac{p q}{q+1-p}} u^{q}\left(r_{0}\right) \int_{0}^{r_{0}} s^{N-1-\frac{p q}{q+1-p}} d s$

Taking into account $N>\frac{p q}{q+1-p}$, we obtain

$$
\begin{gather*}
\beta\left(r_{0}^{\frac{p}{q+1-p}} u\left(r_{0}\right)\right)^{q} \leq\left(\frac{p}{q+1-p}\right)^{p-1} r^{\frac{p(p-1)}{q+1-p}} u^{p-1}\left(r_{0}\right)+ \\
\frac{\beta N-\alpha}{N-\frac{p q}{q+1-p}}\left(r_{0}^{\frac{p}{q+1-p}} u\left(r_{0}\right)\right)^{q} \tag{104}
\end{gather*}
$$

Therefore

$$
\begin{align*}
& r_{0}^{\frac{p}{q+1-p}} u\left(r_{0}\right) \leq \\
& {\left[\left(\frac{p}{q+1-p}\right)^{p-1}\left(\frac{1}{\beta-\frac{\beta N-\alpha}{N-\frac{p q}{q+1-p}}}\right)\right]^{\frac{1}{q+1-p}}=L_{2}} \tag{105}
\end{align*}
$$

Hence by (100) and (105),

$$
\begin{equation*}
r_{0}^{\frac{p}{q+1-p}} u\left(r_{0}\right)=L_{2} \tag{106}
\end{equation*}
$$

As $E_{\frac{p}{q+1-p}}\left(r_{0}\right)=0$, then

$$
\begin{equation*}
r_{0}^{\frac{p}{q+1-p}+1} u^{\prime}\left(r_{0}\right)=\frac{-p}{q+1-p} L_{2} \tag{107}
\end{equation*}
$$

Recalling the logarithmic change (9), $v(t)=$ $r^{\frac{p}{q+1-p}} u(r)$, we obtain by (10), (11) and (12) and (13), the system

$$
\left\{\begin{align*}
v^{\prime}(t)= & \frac{p}{q+1-p} v(t)+|w(t)|^{\frac{2-p}{p-1}} w(t) \tag{108}\\
w^{\prime}(t)= & -\left(N-p-\frac{p}{q+1-p}(p-1)\right) w(t)- \\
& \alpha v^{q}(t)-q \beta v^{q-1}(t)|w(t)|^{\frac{2-p}{p-1}} w(t)
\end{align*}\right.
$$

This system has a non trivial equilibrium point $\left(L_{2},-\left(\frac{p}{q+1-p} L_{2}\right)^{p-1}\right)$ and admits a unique solution, but $v\left(t_{0}\right)=L_{2}$ and $w\left(t_{0}\right)=-\left(\frac{p}{q+1-p} L_{2}\right)^{p-1} \quad$ (because $\left.h\left(t_{0}\right)=\frac{-p}{q+1-p} L_{2}\right)$, where $t_{0}=\ln \left(r_{0}\right)$, then necessarily $v(t)=L_{2}$ and $w(t)=$ $-\left(\frac{p}{q+1-p} L_{2}\right)^{p-1}$, therefore $v^{\prime}(t)=0$ and by (67), $E_{\frac{p}{q+1-p}}(r)=0, \quad \forall r>0$. This is a contradiction. We deduce that $E_{\frac{p}{q+1-p}}(r)>0 \forall r>0$ and $\left.\left.\lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}} u(r) \in\right] 0,+\infty\right]$. That is,

$$
\left|u^{\prime}(r)\right|<\frac{p}{q+1-p} \frac{u(r)}{r}, \quad \forall r>0
$$

In the same way, by integrating (15) on $(0, r)$ we obtain $r^{\frac{p}{+1-p}} u(r) \leq L_{2} \forall r>0$. Then, $\left.\left.\lim _{r \rightarrow+\infty} r^{\frac{p}{q+1-p}} u(r)=d \in\right] 0, L_{2}\right]$. We show that $d=L_{2}$. According to Proposition 3.10, since $v^{\prime}(t)>0$ and $\lim _{t \rightarrow+\infty} v(t)=d>0$, then $\lim _{t \rightarrow+\infty} h(t)=\frac{-p}{q+1-p} d<0 . \quad$ Therefore, $\lim _{t \rightarrow+\infty} w(t)=-\left(\frac{p}{q+1-p} L_{2}\right)^{p-1}$ and necessarily $\lim _{t \rightarrow+\infty} w^{\prime}(t)=0$. Hence, letting $t \rightarrow+\infty$ in the second equation of system (108), we get $d=L_{2}$ and the proof is complete.

5 Application to the parabolic problem

In this section, we prove the existence of radial strictly positive self-similar solution of the following parabolic problem

$$
(Q)\left\{\begin{array}{l}
v_{t}=\Delta_{p} v^{m} \quad \text { in } \quad \mathbb{R}^{N} \times(0,+\infty) \\
v(0,1)=b
\end{array}\right.
$$

where $p>2, N \geq 1,0<m<\frac{1}{p-1}$ and $b>0$.
Theorem 5.1. Assume $0<\frac{\alpha}{\beta}<N$ and $\frac{\alpha}{q \beta}<$ $\frac{p}{q+1-p}$. Then, for every $b>0$, problem (Q) admits a radial strictly positive self-similar solution $U_{b}(x, t)=t^{-\alpha} u^{\frac{1}{m}}\left(t^{-\beta}|x|\right)$, where $\alpha=$ $\frac{\beta p-1}{1-m(p-1)}$ and u is solution of problem (P). Moreover, there exists $L(b)>0$ such that

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} U_{b}(x, t)=L(b)|x|^{\frac{-\alpha}{\beta}} \quad \text { for each } x \neq 0 . \tag{109}
\end{equation*}
$$

Proof. The Existence and uniqueness of U_{b} follow from Theorem 2.1 with $b=a^{q}$ and $m=\frac{1}{q}$. The positivity follows easily from Theorem 4.1.
Put $y=t^{-\beta}|x|$, then

$$
|x|^{\frac{\alpha}{\beta}} U_{b}(x, t)=y^{\frac{\alpha}{\beta}} u^{q}(y) .
$$

According to Theorem 4.2, we have $\lim _{y \rightarrow+\infty} y^{\frac{\alpha}{\beta}} u^{q}(y)=L_{1}^{q}>0$. Therefore, there exists $L(b)=L_{1}^{q}>0$, such that

$$
\lim _{t \rightarrow 0^{+}}|x|^{\frac{\alpha}{\beta}} U_{b}(x, t)=\lim _{y \rightarrow+\infty} y^{\frac{\alpha}{\beta}} u^{q}(y)=L(b) .
$$

The proof is complete.

References:

[1] P. Aviles. Local behavior of positive solutions of some elliptic equation. Comm.Math.Phys 108 (1987) 177-192.
[2] D.G. Aronson and L.A. Peletier. Large time behaviour of solutions of the porous media equation in bounded domains. J. Diff. Eqs. 39 (1981), 378412.
[3] P. Bénilan, M.G. Crandall and M. Pierre. Solutions of the porous media equation in \mathbb{R}^{N} under optimal conditions on initial values. Indiana Univ. Math. J. 33 (1984), 51-87.
[4] M.F. Bidaut-Véron, Self-similar solutions of the p-Laplace heat equation: the fast diffusion case. Pacific J. Math.2, 227 (2006), 201-269.
[5] M.F. Bidaut-Véron, and S. Pohozaev. Nonexistence results and estimates for some nonlinear elliptic problems. J.Anal. Math 84 (2001) 1-49.
[6] Bouzelmate, A. Gmira, G. Reyes, Radial selfsimilar solutions of a nonlinear Ornstein-Uhlenbeck equation. Electronic Journal of Differential Equations, Vol.2007(2007), No.67, pp 1-21.
[7] H. Brezis, L.A. Peletier and D. Terman. A very singular solution of the heat equation with absorption, Arch. Rational Mech. Anal. 96 (1985), 185-209.
[8] L.A. Caffarelli, B. Gidas and J. Spruck. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. In Pure and App Math. 42 (1989) 271297.
[9] J.I. Diaz and J.E. Saa. Uniqueness of very singular self-similar solution of a quasilinear degenerate parabolic equation with absorption. Publ. Matem. 36 (1992), 19-38.
[10] R.H. Fowler, The form near infinity of real continuous solutions of a certain differential equation of second order. Quart. J1. Math 45 (1914) 289-350.
[11] R.H. Fowler. The solutions of Emden's and similar differential equation. Monthly notices Roy. Astr. Soc 91 (1920) 63-91.
[12] R.H. Fowler. Further studies on Emden's and similar differential equation. Quart. J1. Math 2 (1931) 259-288.
[13] B. Franchi, E. Lanconelli and J. Serrin. Existence and uniqueness of nonnegative solutions of quasilinear equations in \mathbb{R}^{N}. Advances in Math. 118 (1996).
[14] B.H. Gilding and L.A. Peletier. On a class of similarity solutions of the porous media equation. II, J. Math. Anal. Appl. 57 (1977), 522-538.
[15] B.H. Gilding and L.A. Peletier. On a class of similarity solutions of the porous media equation. J. Math. Anal. Appl. 55 (1976), 351-364.
[16] M. Guedda and L. Véron. Local and global properties of solutions of quasilinear equations. J1. Diff. Eq 76 (1988) N1, 159-189.
[17] M.A. Herrero and M. Pierre. The Cauchy problem for $u_{t}=\Delta u^{m}$ when $0<m<1$. Trans. Am. Math. Soc. 291 (1985), 145-158.
[18] S. Y. Hsu. Singular limit and exact decay rate of a nonlinear elliptic equation. Nonlinear Anal, 75 (7) (2012) 3443-3455.
[19] S. Y. Hsu. Exact decay rate of a nonlinear elliptic equation related to the Yamade flow. Proc. Amer. Math Soc, 142 (12) (2014) 4239-4249.
[20] K. M. Hui. Asymptotic behaviour of solutions of the fast diffusion equation near its extinction time. Math. Anal. Appl. 454 (2017) 695-715.
[21] G. Leoni. A very singular solution for the porous media equation $u_{t}=\Delta\left(u^{m}\right)-u^{p}$ when $0<m<$ 1. J. Differential Equations, 132, 353-376 (1996).
[22] G. Leoni. Classification of positive solutions of the problem $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+x . \nabla\left(u^{q}\right)+\alpha u^{q}=$ 0 in \mathbb{R}^{N}. Differential Equations, Vol 34, No9, (1998), 1172-1180.
[23] W.M. Ni and J. Serrin. Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case. Accad. Naz. Lincei, Convegni dei Lincei 77 (1986), 231-257.
[24] W. M.Ni and J. Serrin. Nonexistence theorems for singular solutions of quasilinear partial differential equations. Comm. Pure and Appl.Math 38 (1986) 379-399.
[25] J.L.Vazquez. Smoothing and decay estimates for nonlinear diffusion equations. Equations of porous medium type. Oxford Lecture Series in Mathematics and its Applications, vol. 33, Oxford University Press, Oxford, 2006.
[26] J.L.Vazquez. The porous medium equation. Mathematical theory . Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en US

