
Abstract: - This paper is devoted to study the following radial equation

(|u′|p−2u′)′ +
N − 1

r
|u′|p−2u′ + α|u|q−1u + βr(|u|q−1u)′ = 0, r > 0.

where p > 2, q > 1,N ≥ 1, α > 0 and β > 0.
Our purpose is to give existence results of decaying solutions of the above
equation and their asymptotic behavior near infinity. The study depends
strongly of the sign ofNβ − α and the comparison between

α

qβ
,

p

q + 1− p

and
N − p

p− 1
. More precisely, we prove that if Nβ−α > 0, there is a positive

solution u which has one of the following behaviors near infinity:

(i) u(r) ∼
+∞

Lr−
α
qβ , where L > 0.

(ii)u(r) ∼
+∞

(
(
p− 1

qβ
)(q + 1− p)(

N − p

p− 1
− α

qβ
)

(
α

qβ

)p−1
) 1

q+1−p

r−
α
qβ (ln r)

1
q+1−p .

(iii)u(r) ∼
+∞


(p− 1)

(
p

q + 1− p

)p−1(N − p

p− 1
− p

q + 1− p

)
α− qβ

p

q + 1− p


1

q+1−p

r
−p

q+1−p .
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1 Introduction and Main Results
The aim of this paper is to investigate the structure of
positive radial solutions to

∆pu+ α|u|q−1u+ βx.∇(|u|q−1u) = 0, x ∈ RN ,
(1)

where p > 2, q > 1, N ≥ 1, α > 0 and β > 0.
As usual ∆pu = div(|∇u|p−2∇u) is the p −
laplacien operator.
The idea of this work comes from the study of radial
self-similar solutions to the following parabolic equa-
tion

vt = ∆pv
m in RN × (0,+∞), (2)

where p > 2 and 0 < m < 1.
When p = 2, this equation becomes the porous
medium equation, it appears in many physical models
and it has been treated extensively in the literature, see
[25] and [26]. When m > 1, it is the slow diffusion
equation, when 0 < m < 1 it is the fast diffusion
equation. When m = 1, equation (2) reduce to the
heat equation. See for example works of [1], [2], [3],
[4], [7], [8], [9], [14], [15] and [21].
The radial self-similar solution to the parabolic equa-
tion (2) are the form

v(x, t) = t−αW (t−β|x|). (3)

Where
α =

β p− 1

1−m(p− 1)
(4)

andW is a radial positive solution which satisfies

∆pW
m(r) + αW (r) + βrW ′(r) = 0, r > 0.

(5)
For simplicity in the notation, we set u = Wm and
q =

1

m
in (5), we obtain

∆pu+ αuq + βr(uq)′ = 0, r > 0. (6)

The question of the existence of a self-similar of equa-
tion (2) arises. We will prove that (2) admits a ra-
dial positive self-similar solution v if

α

β
< N and

α

qβ
<

p

q + 1− p
.

To obtain this result, we carry out a careful analysis
of radial solutions of equation (1). Many authors have
studied equation (1). If p = 2, α = 1 and β = 0, the
first study is due to Emden-Fowler, see for example
[10], [11] and [12]). He proved the existence results
and give a classification of entire radial solutions. In
the case p = 2, α > 0 and β > 0, equation (1) was
studied by [18], [19], and [20]. When p > 2, α = 1
and β = 0, the first results are due to Ni and Serrin

[23]. Guedda and Veron [16] studied the existence
of entire solutions in radial case. The non radial case
was investigated by Bidaut- Veron and Pohozaev [5].
When p > 1, α > 0 and β = 1, equation (1) was stud-
ied by [22]. In the present work, we are interested in
radial solutions of equation (1), we will study the fol-
lowing initial value problem.
Problem (P): Find a function u defined on [0,+∞[

such that |u′|p−2u′ is in C1([0,+∞[) and

(|u′|p−2u′)′+
N − 1

r
|u′|p−2u′+α|u|q−1u+βr(|u|q−1u)′ = 0,

(7)

u(0) = a > 0, u′(0) = 0. (8)
By reducing the problem (P ) to a fixed point for a
suitable integral operator see (for example [6]), we
prove that for each a > 0, the problem (P ) has a
unique global solution u(., a, α, β).
We focus our study to the caseNβ−α ≥ 0. IfNβ−
α = 0 and q ≥ p − 1, we find explicit solution of
problem (P )

u(r, a) =

ae
−(p−1)

p
β

1
p−1 r

p
p−1 if q = p− 1(

a
p−1−q

p−1 + q+1−p
p β

1

p−1 r
p

p−1

)−(p−1)

q+1−p if q > p− 1.

If Nβ − α = 0 and q < p − 1, the solution u(r, a)
has compact support.
If Nβ − α > 0, we prove that u(r, a) is a decaying
solution for each a > 0, i.e it is strictly positive and
strictly decreasing on (0,+∞).
We are interested also to give asymptotic behavior of
decaying solutions of problem (P ). For this purpose,
let us represent equation (7) as an equivalent form.
For any real c, we set

vc(t) = rcu(r) where r > 0 and t = ln(r). (9)

Then, vc satisfies

w
′

c(t)+Acwc(t)+αe
Kct|vc|q−1vc(t)+qβe

Kct|vc|q−1hc(t) = 0
(10)

where
wc(t) = |hc|p−2hc(t), (11)

hc(t) = v
′

c(t)− cvc(t) = rc+1u′(r), (12)

Ac = N − p− c(p− 1) and Kc = c(p− 1− q) + p. (13)

We remark that three critical values of the parame-

ter c will be involved,
α

qβ
,
N − p

p− 1
and

p

q + 1− p
.

These values play an important role in the study of
asymptotic behavior of positive solution of problem
(P ). The main results are the following.
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Theorem 1.1. Let a > 0. Then problem (P ) has a
unique global solution u(., a, α, β). Moreover,

(|u′|p−2u′)′(0) =
−αaq

N
.

Theorem 1.2. Assume
α

β
< N . Let u be a solution

of problem (P ). Then, u is a decaying solution and
has one of the following asymptotic behaviors.
(i) If

α

qβ
<

p

q + 1− p
,

lim
r→+∞

r
α

qβ u(r) = L1 > 0

and
lim

r→+∞
r

α

qβ
+1u′(r) =

−α
qβ

L1 < 0.

(ii) If
α

qβ
=

p

q + 1− p
,

lim
r→+∞

r
α

qβ u(r)(ln(r))
−1

q+1−p =(
(
p− 1

qβ
)(q + 1− p)

(
N − p

p− 1
− α

qβ

)(
α

qβ

)p−1
) 1

q+1−p

(iii) If
α

qβ
>

p

q + 1− p
,

lim
r→+∞

r
p

q+1−pu(r) =(p− 1)
(

p
q+1−p

)p−1 (
N−p
p−1 − p

q+1−p

)
α− qβ p

q+1−p


1

q+1−p

and

lim
r→+∞

r
p

q+1−p
+1u′(r) =

−p
q + 1− p

(p− 1)
(

p
q+1−p

)p−1 (
N−p
p−1 − p

q+1−p

)
α− qβ p

q+1−p


1

q+1−p

Now, we consider the problem

(Q)

{
vt = ∆pv

m in RN × (0,+∞)

v(0, 1) = b

where p > 2, N ≥ 1, 0 < m <
1

p− 1
and b > 0.

Theorem 1.3. Assume 0 <
α

β
< N and

α

qβ
<

p

q + 1− p
. Then for every b > 0, problem

(Q) admits a radial strictly positive self-similar so-
lution Ub(x, t) = t−αu

1

m (t−β|x|), where α =
β p− 1

1−m(p− 1)
and u is solution of problem (P ).

Moreover, there exists L(b) > 0 such that

lim
t→0+

Ub(x, t) = L(b)|x|
−α

β for each x ̸= 0.

The paper is organized as follows. Section 2 is de-
voted to existence and uniqueness of global solutions
of problem (P ), more precisely we give the proof of
Theorem 1.1. In section 3, we present fundamental
properties of solution u of problem (P ) and we study
also the monotonicity and behavior of rcu(r)where c
is a positive constant that we compare with the values
α

qβ
,
N − p

p− 1
and

p

q + 1− p
. In section 4 we prove ex-

istence of decaying solutions of problem (P ) and we
describe their asymptotic behavior as r → +∞ in
the three cases,

α

qβ
<

p

q + 1− p
,
α

qβ
=

p

q + 1− p

and
α

qβ
>

p

q + 1− p
. The obtained results prove the

Theorem 1.2. Finally, in section 5 we give the proof
of Theorem 1.3 by applying the obtained results in the
previous sections related to the parabolic equation (2).

2 Existence of Global Solutions
In this section, we establish the existence of global
solutions of problem (P ).

Theorem 2.1. Let a > 0. Then problem (P ) has a
unique global solution u(., a, α, β). Moreover,

(|u′ |p−2u
′
)
′
(0) =

−αaq

N
. (14)

Proof. The proof will be done in three steps.
Step 1: Existence of a local solution.
Multiply equation (7) by rN−1, we obtain

(rN−1|u′ |p−2u
′
+βrN |u|q−1u)

′
= (βN−α)rN−1|u|q−1u.

(15)
Integrating (15) twice from 0 to r and taking into ac-
count (8), we see that problem (P ) is equivalent to the
equation

u(r) = a−
r∫

0

G(F [u](s)) ds, (16)

where

G(s) = |s|(2−p)/(p−1)s, s ∈ R (17)
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and the nonlinear mapping F is given by the formula

F [u](s) =βs|u|q−1u(s)+

(α− βN)s1−N

s∫
0

σN−1|u|q−1u(σ) dσ.

(18)

Now we consider for a > M > 0, the complete met-
ric space

Ea,M,R = {φ ∈ C ([0, R]) : ||φ− a||0 ≤M}. (19)

Next we define the mapping Ψ on Ea,M,R by

Ψ[φ](r) = a−
r∫

0

G(F [φ](s)) ds. (20)

Claim 1. Ψ maps Ea,M,R into itself for some small
M and R > 0.
Obviously Ψ[φ] ∈ C([0, R]). From the definition of
the space Ea,M,R, φ(r) ∈ [a −M,a +M ], for any
r ∈ [0, R]. Simple calculations show that for small
M , F [φ] has a constant sign in [0, R] for every φ ∈
Ea,M,R. More precisely,

F [φ](s) ≥ Ks for all s ∈ [0, R], (21)

whereK =
α

2N
aq.

Taking into account that the function r → G(r)

r
is

decreasing on (0,+∞), we have

|Ψ[φ](r)− a| ≤
r∫

0

G(F [φ](s))

F [φ](s)
|F [φ](s)| ds

r∫
0

G(Ks)

Ks
|F [φ](s)| ds

for r ∈ [0, R]. On the other hand,

|F [φ](s)| ≤ Cs, where C =
[
β +

∣∣∣ α
N

− β
∣∣∣] (a+M)q.

We thus get

|Ψ[φ](r)− a| ≤ p− 1

p
CK

2−p

p−1 r
p

p−1

for every r ∈ [0, R]. Choose R small enough such
that

|Ψ[φ](r)− a| ≤M, φ ∈ Ea,M,R.

And thereby Ψ[φ] ∈ Ea,M,R. The claim is thus
proved.

Claim 2. Ψ is a contraction in some interval [0, ra].
According to Claim 1, if ra is a small enough, the
space Ea,M,ra applies into itself. For such ra and any
φ,ψ ∈ Ea,M,ra we have

|Ψ[φ](r)−Ψ[ψ](r)| ≤
r∫

0

|G(F [φ](s))−G(F [ψ](s))| ds (22)

where F [φ] is given by (18). Next, let

Φ(s) = min(F [φ](s), F [ψ](s)).

As a consequence of estimate (21), we have

Φ(s) ≥ Ks for 0 ≤ s ≤ r < ra

and then

|G(F [φ](s))−G(F [ψ](s))| ≤ G(Φ(s))

Φ(s)
|F [φ](s)− F [ψ](s)|

≤ G(Ks)

Ks
|F [φ](s)− F [ψ](s)|.

(23)

Moreover,

|F [φ](s)− F [ψ](s)| ≤ C ′||φ− ψ||0 s, (24)

where

C ′ = q
[
β + | α

N
− β|

]
(a+M)q−1.

Combining (22), (23) and (24), we have

|Ψ[φ](s)−Ψ[ψ](s)| ≤ p− 1

p
C ′K

2−p

p−1 r
p

p−1 ||φ− ψ||0 (25)

for any r ∈ [0, ra]. Choosing ra small enough, Ψ, is
a contraction. This proves the claim.
The Banach Fixed Point Theorem then implies the ex-
istence of a unique fixed point ofΨ inEa,M,rA , which
is a solution of (16) and, consequently, of problem
(P ). As usual, this solution can be extended to a max-
imal interval [0, rmax[, 0 < rmax ≤ +∞.
Step 2: Existence of a global solution.
We define the following energy function

E(r) =
p− 1

p
|u′|p + α

q + 1
|u|q+1(r). (26)

According to equation (7), we get

E′(r) = −ru′2
[
N − 1

r2
|u′|p−2 + qβ|u|q−1(r)

]
. (27)

SinceN ≥ 1 and β > 0 thenE is decreasing, hence it
is bounded. Consequently, u and u′ are also bounded
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and the local solution constructed above can be ex-
tended to R+.
Step 3: (|u′|p−2u′)′(0) =

−αaq

N
.

Integrating (15) between 0 and r, we get

|u′|p−2u′

r
=− β|u|q−1u(r)+

(βN − α)r−N

r∫
0

sN−1|u|q−1u(s) ds.

Hence using L'Hopital's rule and letting r → 0, we
obtain the desired result. The proof of Theorem is
complete.

3 Fundamental Properties
Proposition 3.1. Assume N > 1. Let u be a solution
of problem (P ). Then,

lim
r→+∞

u(r) = lim
r→+∞

u′(r) = 0. (28)

Proof. We show that lim
r→+∞

E(r) = 0. Since
E′(r) ≤ 0 and E(r) ≥ 0 for all r > 0, there ex-
ists a constant l ≥ 0 such that lim

r→+∞
E(r) = l ≥ 0.

Suppose l > 0. Then, there exists r1 > 0, such that

E(r) ≥ l

2
for r ≥ r1. (29)

Now consider the function

D(r) =E(r) +
N − 1

2r
|u′|p−2u′(r)u(r)+

qβ(N − 1)

2(q + 1)
|u|q+1(r). (30)

Then

D′(r) = −qβr|u|q−1(r)u′2−
N − 1

2r

[
|u′|p + N

r
|u′|p−2u′u+ α|u|q+1(r)

]
.

(31)

Since β > 0, we have

D′(r) ≤ −N − 1

2r

[
|u′|p + α|u|q+1(r) +

N

r
|u′|p−2u′u

]
.

Recalling that u and u′ are bounded (because E is
bounded), we have

lim
r→+∞

|u′|p−2u′u(r)

r
= 0.

Moreover, by (26) and (29) we have

|u′|p + α|u|q+1(r) ≥ E(r) ≥ l

2
for r ≥ r1.

Consequently, there exist two constants c > 0 and
r2 ≥ r1 such that

D′(r) ≤ − c
r

for r ≥ r2.

Integrating this last inequality between r2 and r, we
get

D(r) ≤ D(r2)− c ln(
r

r2
) for r ≥ r2.

In particular, we obtain lim
r→+∞

D(r) = −∞. Since

E(r) +
N − 1

2r
|u′|p−2u′(r)u(r) ≤ D(r),

we get lim
r→+∞

E(r) = −∞. This is impossible, hence
the conclusion.

Proposition 3.2. Let u be a solution of problem (P )
and let Su := {r > 0 : u(r) > 0}. Then u′(r) < 0
for any r ∈ Su.

Proof. We argue by contradiction. Let r0 > 0 be the
first zero of u′. Since by (14) u′(r) < 0 for r ∼ 0,
we have by continuity and the definition of r0, there
exists a left neighborhood ]r0−ε, r0[ (for some ε > 0)
where u′ is strictly increasing and strictly negative,
that is (|u′|p−2u′)′(r) > 0 for any r ∈]r0 − ε, r0[,
hence by letting r → r0 we get (|u′|p−2u′)′(r0) ≥
0. But by equation (7), we have (|u′|p−2u′)′(r0) =
−α|u|q−1u(r0) < 0 since u(r0) > 0, u′(r0) = 0
and α > 0. This is a contradiction. The proof is
complete.

Proposition 3.3. Let u be a strictly positive solution
of problem (P ), then u and u′ have the same behavior
(28).

Proof. If N > 1, then by Proposition 3.1,
lim

r→+∞
u(r) = lim

r→+∞
u′(r) = 0.

If N = 1. Let

ϕ(r) = |u′|p−2u′(r) + βr|u|q−1u(r). (32)

Then by equation (7),

ϕ′(r) = (β − α)|u|q−1u(r). (33)

Since u is strictly positive then it is strictly decreas-
ing. Therefore lim

r→+∞
u(r) ∈ [0,+∞[. Suppose

that, lim
r→+∞

u(r) = L > 0. Since the energy func-
tion E given by (26) converges, then necessarily,
lim

r→+∞
u′(r) = 0. Therefore lim

r→+∞
ϕ(r) = +∞.

Using L'Hopital's rule, we have

lim
r→+∞

ϕ′(r) = lim
r→+∞

ϕ(r)

r
.
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That is
(β − α)Lq = β Lq.

Therefore, −αLq = 0. But This contradicts the fact
that L > 0. Hence, lim

r→+∞
u(r) = 0.

Now for any c > 0, define the function

Ec(r) = cu(r) + ru
′
(r), r > 0. (34)

It is clear that

(rcu(r))′ = rc−1Ec(r), r > 0. (35)

Hence, using (7), we have for any r > 0 such that
u′(r) ̸= 0,

(p− 1)|u′|p−2E′
c(r) = (p− 1)(c− N − p

p− 1
)|u′|p−2u′−

αr|u|q−1u− qβr2|u|q−1u′(r)

= (p− 1)(c− N − p

p− 1
)|u′|p−2u′(r)−

qβr|u|q−1E α

qβ
(r). (36)

Consequently, if Ec(r0) = 0 for some r0 > 0, equa-
tion (7) gives

(p− 1)|u′|p−2(r0)E
′
c(r0) = r0|u|q−1u(r0)

[
(qβc− α)+

(p− 1)cp−1

(
N − p

p− 1
− c

)
|u|p−q−1(r0)

rp0

]
. (37)

From which the sign of Ec(r) for large r can be ob-
tained.
Lemma 3.4. Let u be a strictly positive solution of
problem (P ). Then Ec(r) ̸= 0 for large r in the fol-
lowing cases.
(i) c =

α

qβ
̸= N − p

p− 1
.

(ii) c ̸= α

qβ
and q ≤ p− 1.

(iii) c ̸= α

qβ
, q > p − 1 and lim

r→+∞
r

p

q+1−pu(r) =

+∞.
(iv) c ̸= N − p

p− 1
, q > p−1 and lim

r→+∞
r

p

q+1−pu(r) =

0.
Proof. Assume that there exists a large r0 such that
Ec(r0) = 0. Using the fact that u > 0, lim

r→+∞
u(r) =

0, then according to (37) and our hypotheses, we get
E′

c(r0) ̸= 0 and thereby Ec(r) ̸= 0 for large r.

Lemma 3.5. Assume 0 < c <
α

qβ
. Let u be a strictly

positive solution of problem (P ). If q ≤ p− 1 or q >
p− 1 and lim

r→+∞
r

p

q+1−pu(r) = +∞, then Ec(r) < 0

for large r and lim
r→+∞

rcu(r) = 0

Proof. We know by Lemma 3.4, that Ec(r) ̸= 0 for
large r. Suppose that Ec(r) > 0 for large r, hence

r|u′(r)| < cu(r) for large r. (38)

Using this last inequality and the fact that u > 0, we
obtain according to (7)

(|u′|p−2u′)′(r) < uq
[
(qβc− α) + (N − 1)cp−1u

p−1−q

rp

]
. (39)

If q ≤ p − 1 or q > p − 1 and lim
r→+∞

r
p

q+1−pu(r) =

+∞, we have lim
r→+∞

up−1−q

rp
= 0. Then,

(|u′|p−2u′)′(r) ∼
+∞

(qβc − α)uq(r) < 0. Since

u′(r) < 0, then lim
r→+∞

|u′|p−2u′(r) ∈ [−∞, 0[,

but this contradicts the fact that lim
r→+∞

u′(r) = 0 .
Then, Ec(r) < 0 for large r and lim

r→+∞
rcu(r) ∈

[0,+∞[. Suppose that lim
r→+∞

rcu(r) > 0, then

lim
r→+∞

rc+εu(r) = +∞ for 0 < c + ε <
α

qβ
. This

is impossible, and therefore lim
r→+∞

rcu(r) = 0. The
proof of lemma is complete.

Lemma 3.6. Assume
N − p

p− 1
≥ α

qβ
. Let u be

a strictly positive solution of problem (P ). Then
E α

qβ
(r) > 0 for any r > 0.

Proof. We distinguish two cases.

Case 1.
N − p

p− 1
>

α

qβ
.

We have E α

qβ
(0) =

α

qβ
u(0) > 0. Let r0 > 0 be the

first zero of E α

qβ
(r). Therefore E α

qβ
(r) > 0 in [0, r0[,

E α

qβ
(r0) = 0 and E′

α

qβ

(r0) ≤ 0. But using the fact

that u(r0) > 0 and
N − p

p− 1
>

α

qβ
, we have by (37),

E′
α

qβ

(r0) > 0, which is a contradiction.

Case 2.
N − p

p− 1
=

α

qβ
.

we have by (36),

(p− 1)|u′|p−2E′
α

qβ
(r) = −qβr|u|q−1E α

qβ
(r). (40)

Let r0 > 0. We introduce the following function

f(r) =
qβ

p− 1

r∫
r0

s|u′|2−p(s)|u|q−1(s) ds. (41)

By (40), we obtain

E′
α

qβ
(r) + f ′(r)E α

qβ
(r) = 0. (42)
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Hence, (
ef(r)E α

qβ
(r)
)′

= 0. (43)

Integrating this last equality from r0 to r, we obtain

E α

qβ
(r) = E α

qβ
(r0)e

−f(r) ∀r > r0. (44)

Since E α

qβ
(r0) > 0 for any r0 > 0 close to 0, then

E α

qβ
(r) > 0 for any r > 0.

This completes the proof of lemma.

Lemma 3.7. Assume 0 <
N − p

p− 1
<

α

qβ
and

E α

qβ
(r) > 0 for large r. Let u be a strictly positive

solution of problem (P ). Then EN−p

p−1

(r) > 0 for any
r > 0.
Proof. We have EN−p

p−1

(0) > 0. Suppose that there
exists r0 > 0 the first zero of EN−p

p−1

. Then, by 37,
E′

N−p

p−1

(r0) < 0. Therefore, EN−p

p−1

(r) < 0 ∀r >

r0. On the other hand, since E α

qβ
(r) > 0 for large

r, then by (36), we have E′
N−p

p−1

(r) < 0 for large
r. Hence, lim

r→+∞
EN−p

p−1

(r) ∈ [−∞, 0[, which im-

plies that lim
r→+∞

ru′(r) ∈ [−∞, 0[, but this contra-
dicts the fact that lim

r→+∞
u(r) = 0. Consequently,

EN−p

p−1

(r) > 0 for any r > 0.

Proposition 3.8. Assume
α

β
< N ,

α

qβ
=

p

q + 1− p

and lim
r→+∞

r
p

q+1−pu(r) = +∞. Let u be a strictly
positive solution of problem (P ). Then

lim
r→+∞

ru′(r)

u(r)
=

−α
qβ

. (45)

Proof. Since
α

β
< N and

α

qβ
=

p

q + 1− p
, then

N − p

p− 1
>

N

q
>

α

qβ
, therefore using the fact that

E α

qβ
(r) > 0 for any r > 0 by lemma 3.6, we ob-

tain
−α
qβ

u(r) < ru′(r) < 0 for any r > 0. (46)

Let c > 0 and

g(r) =
Ec(r)

u(r)
= c+

ru′(r)

u(r)
, r > 0. (47)

then

c− α

qβ
< g(r) < c for any r > 0. (48)

Consequently g is bounded for large r. We prove that
g converges. Assume by contradiction that it oscil-
lates, that is there exist two sequences {ηi} and {ξi}
going to +∞ as i → +∞ such that g has a local
minimum in ηi and a local maximum in ξi satisfying
ηi < ξi < ηi+1 and

lim inf
r→+∞

g(r) = lim
i→+∞

g(ηi) = γ1 <

lim sup
r→+∞

g(r) = lim
i→+∞

g(ξi) = γ2. (49)

Therefore, by (48), we have

c− α

qβ
≤ γ1 < γ2 ≤ c. (50)

Since g′(ξi) = 0, then

E′
c(ξi)

u′(ξi)
=
Ec(ξi)

u(ξi)
= g(ξi). (51)

Therefore

lim
i→+∞

E′
c(ξi)

u′(ξi)
= γ2. (52)

On the other hand, we have by (36) and the fact that
u′(r) < 0,

E′
c(r)

u′(r)
=

(
c− N − p

p− 1

)
+

qβ

p− 1

ruq(r)

|u′|p−1(r)

[
α

qβ
+
ru′(r)

u(r)

]
. (53)

As E α

qβ
(r) > 0 ∀r > 0, then

|u′(r)|p−1

ruq(r)
<

(
α

qβ

)p−1

r−pup−1−q. (54)

Since lim
r→+∞

r
p

q+1−pu(r) = +∞, then

lim
r→+∞

ruq(r)

|u′(r)|p−1
= +∞. (55)

Moreover, we have

lim
i→+∞

(
α

qβ
+
ξiu

′(ξi)

u(ξi)

)
=

α

qβ
+ lim

i→+∞
g(ξi)− c

=
α

qβ
+ γ2 − c > 0. (56)

Then, by (53)

lim
i→+∞

E′
c(ξi)

u′(ξi)
= +∞. (57)
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But this contradicts (52). Then g(r) converges as r →

+∞, and consequently
ru′(r)

u(r)
converges also. Let

lim
r→+∞

ru′(r)

u(r)
= −d ≤ 0, then by (46), 0 ≤ d ≤ α

qβ
.

Suppose that d <
α

qβ
, then

lim
r→+∞

(
α

qβ
+
ru′(r)

u(r)

)
=

α

qβ
− d > 0. (58)

Therefore, by (53) and (55),

lim
r→+∞

E′
c(r)

u′(r)
= +∞. (59)

Using Hospital's rule, we get

lim
r→+∞

E′
c(r)

u′(r)
= lim

r→+∞

Ec(r)

u(r)
= lim

r→+∞

(
c+

ru′(r)

u(r)

)
= c− d. (60)

This contradicts (59). Consequently lim
r→+∞

ru′(r)

u(r)
=

−α
qβ

. The proof is complete.

Proposition 3.9. Assume
α

β
< N ,

α

qβ
=

p

q + 1− p

and lim
r→+∞

r
p

q+1−pu(r) = +∞. Let u be a strictly
positive solution of problem (P ). Then,

• if 0 < c <
α

qβ
, lim

r→+∞
rcu(r) =

lim
r→+∞

rc+1u′(r) = 0.

• if c >
α

qβ
, lim

r→+∞
rcu(r) = +∞ and

lim
r→+∞

rc+1u′(r) = −∞.

Proof. First, we show that E′
c(r) ̸= 0 for large r.

If E′
c(r) = 0 for some large r, then

(p− 1)|u′|p−2E′′
c (r) = ruq−1|u′|

[
qβ(

α

qβ
− c)−

qβ(q − 1)
E α

qβ
E 1

q−1

r|u′|u
− qβ(p− 1)(c− N − p

p− 1
)
E α

qβ

r|u′|
+

(p− 1)(N − 1)

(
c− N − p

p− 1

)
|u′|p−1

ruq
u

r|u′|

]
(61)

We know by Proposition 3.8 that lim
r→+∞

ru′(r)

u(r)
=

−α
qβ

, then

lim
r→+∞

E 1

q−1
(r)

u(r)
=

1

q − 1
− α

qβ
(62)

and

lim
r→+∞

E α

qβ
(r)

r|u′|
= 0. (63)

On the other hand, since E α

qβ
(r) > 0, ∀r > 0 (by

Lemma 3.6) and lim
r→+∞

r
p

q+1−p = 0, we obtain

lim
r→+∞

|u′(r)|p−1

ruq(r)
= 0. (64)

Therefore, using the fact that lim
r→+∞

u(r)

r|u′|
=
qβ

α
, we

get

lim
r→+∞

|u′|p−1(r)

ruq(r)

u(r)

r|u′(r)|
= 0. (65)

Using (62), (63) and (65), we get from (61), E′′
c (r) ̸=

0 if c ̸= α

qβ
. Consequently, if c ̸= α

qβ
, we have

E′
c(r) ̸= 0 for large r. We distinguish two cases.

Case 1. 0 < c <
α

qβ
.

We have by Lemma 3.5, Ec(r) < 0 for large r and
lim

r→+∞
rcu(r) = 0 . If E′

c(r) < 0 for large r,
then lim

r→+∞
Ec(r) ∈ [−∞; 0[, this is impossible since

lim
r→+∞

u(r) = 0 and lim
r→+∞

ru′(r) = 0. Therefore,
E′

c(r) > 0 for large r. On the other hand, we have

(rc+1u′)′ = rcE′
c(r), (66)

Then the function rc+1u′ is negative and increasing
for large r and therefore, using L'Hopital's rule, we
obtain lim

r→+∞
rc+1u′(r) = lim

r→+∞
rcu(r) = 0.

Case 2. c >
α

qβ
.

We have Ec(r) > 0, ∀r > 0 (by Lemma 3.6).
If E′

c(r) > 0 for large r, lim
r→+∞

Ec(r) ∈]0; +∞],
this is also impossible. Therefore, E′

c(r) < 0
for large r. Hence, lim

r→+∞
rcu(r) ∈]0,+∞] and

lim
r→+∞

rc+1u′(r) ∈ [−∞, 0[. Suppose that −∞ <

lim
r→+∞

rc+1u′(r) < 0, then by L'Hopital's rule, 0 <
lim

r→+∞
rcu(r) < +∞.

Using logarithmic change (9), we have vc and hc con-
verge, Ac > 0 and Kc < 0 and by letting t → +∞
in equation (10), we obtain lim

t→+∞
w′
c(t) > 0. But

this contradicts the fact that w converges. Therefore
lim

r→+∞
rc+1u′(r) = −∞ and lim

r→+∞
rcu(r) = +∞.

The proof is complete.

Proposition 3.10. Let u be a solution of problem
(P ). If there exists c > 0 such that rcu(r) is
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monotone for large r and lim
r→+∞

rcu(r) = d. Then

lim
r→+∞

rc+1u′(r) = −c d.

Proof. According to logarithmic change (9) and 34),
we have

v′c(t) = rcEc(r). (67)

Then, the function vc(t) is monotone for large t and
lim

t→+∞
vc(t) = d. Therefore for large t0, the inte-

gral
∫ t

t0

|v′c(s)| ds converges as t → +∞. There-

fore, lim
t→+∞

v′c(t) = 0. Hence, by (12) lim
t→+∞

hc(t) =

−c d, that is lim
r→+∞

rc+1u′(r) = −c d.

4 Asymptotic Behavior at infinity
In this section we study the asymptotic behavior near
infinity of positive solutions of problem (P ).

Theorem 4.1. Assume
α

β
< N . Then any solution of

problem (P ) is a decaying solution.

Proof. We have u(0) > 0. Assume by contradiction
that there exists r0 > 0 such that u(r0) = 0 (where r0
is the first zero of u). Then, u′(r0) ≤ 0. On the other
hand, integrating (15) between 0 and r0, we obtain

rN−1
0 |u′|p−2u′(r0) = (βN − α)

r0∫
0

sN−1uq(s) ds.

(68)
The right-hand side of the previous equality is strictly
positive, but this contradicts the fact that u′(r0) ≤
0. Therefore u is strictly positive and therefore it is
strictly decreasing by Proposition 3.2. Hence u is a
decaying solution. The theorem is proved.

Theorem 4.2. Assume
α

β
< N and

α

qβ
<

p

q + 1− p
. Let u be a solution of problem (P ). Then

lim
r→+∞

r
α

qβ u(r) = L1 > 0. (69)

and
lim

r→+∞
r

α

qβ
+1u′(r) =

−α
qβ

L1 < 0. (70)

Proof. Recall by Theorem 4.1 that u is strictly posi-
tive and then it strictly decreasing. Set

I(r) = r
α

β

[
β

α
uq(r) +

1

αr
|u′|p−2u′(r)

]
=
β

α
r

α

β uq
[
1− 1

β

|u′|p−1(r)

ruq(r)

]
(71)

A simple calculation gives

I ′(r) =
−1

α
(N − α

β
)r

α

β
−2|u′|p−2u′(r). (72)

Since N >
α

β
and u′(r) < 0, then I ′(r) > 0 ∀r > 0.

Moreover, using (14), the fact that u(0) = a > 0,
we get lim

r→0
I(r) = 0. Therefore, I(r) > 0 ∀r >

0, hence lim
r→+∞

I(r) ∈]0,+∞] and then there exists
c > 0 such that I(r) ≥ c for large r. As u′(r) < 0,
then

r
α

β uq(r) ≥ α

β
c for large r. (73)

On the other hand, we know that by Lemma 3.4 and
Lemma 3.6 that E α

qβ
(r) ̸= 0 for large r. Then, from

(73), necessarily lim
r→+∞

r
α

qβ u(r) ∈]0;+∞]. Sup-

pose that lim
r→+∞

r
α

qβ u(r) = +∞, then necessarily
E α

qβ
(r) > 0 for large r and therefore

0 <
|u′|p−1(r)

ruq(r)
<

(
α

qβ

)p−1 1

rpuq+1−p(r)
. (74)

As, lim
r→+∞

r
α

qβ u(r) = +∞, then

lim
r→+∞

rpuq+1−p(r) = +∞, which implies ac-

cording to (74) that lim
r→+∞

|u′|p−1(r)

ruq(r)
= 0. This

leads from (71) that I(r) ∼
+∞

β

α
r

α

β uq(r) and
therefore lim

r→+∞
I(r) = +∞. Let

0 < σ < min

(
α

qβ
;

1

p− 1

[
α

qβ
(p− 1− q) + p

])
. (75)
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By Lemma 3.5, we obtain, lim
r→+∞

r
α

qβ
−σu(r) = 0.

Then
u(r) ≤ rσ−

α

qβ for large r.

Using this last inequality and the fact that E α

qβ
(r) > 0

for large r, we get

0 < I ′(r) <

1

α
(N − α

β
)

(
α

qβ

)p−1

rσ(p−1)+ α

qβ
(q+1−p)−p−1.

Since σ(p − 1) + α
qβ (q + 1 − p) − p < 0, then

lim
r→+∞

I(r) is finite, which contradicts the fact that

lim
r→+∞

I(r) = +∞. Consequently, lim
r→+∞

r
α

qβ u(r) =

L1 > 0. Moreover, since E α

qβ
(r) ̸= 0 for large r,

then r
α

qβ u(r) is monotone for large r. Therefore, by
Proposition 3.10, lim

r→+∞
r

α

qβ
+1u′(r) =

−α
qβ

L1 < 0.

This completes the proof.

Theorem 4.3. Assume
α

β
< N and

α

qβ
=

p

q + 1− p
. Let u be a solution of problem (P ). Then

lim
r→+∞

r
α

qβ u(r)(ln(r))
−1

q+1−p =(
(
p− 1

qβ
)(q + 1− p)

(
N − p

p− 1
− α

qβ

)(
α

qβ

)p−1
) 1

q+1−p

(76)

Proof. First we show that lim
r→+∞

r
α

qβ u(r) = +∞.
Since u is strictly positive, we introduce this follow-
ing function

φ(r) = rN−1|u′ |p−2u
′
(r) + βrNuq(r). (77)

then by (15), we get

φ′(r) = (βN − α)rN−1uq(r). (78)

Since Nβ > α and u(r) > 0, then φ′(r) > 0 and as
φ(0) = 0, we have φ(r) > 0 ∀r > 0. That is, for any
r > 0,

|u′ |p−2u
′
(r) > −β r uq(r) (79)

As u′(r) < 0, then for any r > 0

u′(r)u
−q

p−1 > −β
1

p−1 r
1

p−1 . (80)

Integrating (80) twice from r0 to r and taking into ac-
count q > p− 1, we obtain

u
p−1−q

p−1 (r)− u
p−1−q

p−1 (r0) <

q + 1− p

p
β

1

p−1

(
r

p

p−1 − r
p

p−1

0

)
. (81)

Then there exists C > 0 such that

r
p

q+1−pu(r) > C for large r. (82)

As
α

β
< N and

α

qβ
=

p

q + 1− p
, then

N − p

p− 1
>

α

qβ
. Hence, by Lemma 3.6, E α

qβ
(r) > 0 for any r >

0. Consequently lim
r→+∞

r
α

qβ u(r) ∈]0,+∞]. Suppose

that lim
r→+∞

r
α

qβ u(r) = l > 0. Using equation (7), we
get

rN−1|u′ |p−2u
′
(r) + βrNuq(r) =

(βN − α)

r∫
0

sN−1uq(s) ds. (83)

Then

r
α

β
−1|u′ |p−2u

′
(r) + βr

α

β uq(r) =

(βN − α)r
α

β
−N

r∫
0

sN−1uq(s) ds. (84)

Since
r∫

0

sN−1uq(s) ds >
1

N
rNuq =

1

N
r

α

β uqrN−α

β −→
r→+∞

+∞

Then, using L'Hopital's rule, we obtain

lim
r→+∞

r∫
0

sN−1uq(s) ds

rN−α

β

= lim
r→+∞

rN−1uq(r)(
N − α

β

)
rN−α

β
−1

=
βlq

βN − α
. (85)
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Therefore, from (84) we have

lim
r→+∞

r
α

β
−1|u′ |p−2u

′
(r) = 0. (86)

that is,

lim
r→+∞

r
α
β

−p

p−1
+1u

′
(r) = 0. (87)

Using L'Hopital's rule and the fact that
α
β − p

p− 1
=

p

q + 1− p
, we obtain lim

r→+∞
r

p

q+1−pu(r) = 0. But

this contradicts the fact that lim
r→+∞

r
p

q+1−pu(r) = l >

0. Consequently, lim
r→+∞

r
p

q+1−pu(r) = +∞.
Using the fact that u is strictly positive and decreas-
ing, we obtain by (36),

E′
α

qβ

(r)

u′
=

(
α

qβ
− N − p

p− 1

)
+

qβ

p− 1

r uq

|u′|p−1

E α

qβ
(r)

u
=(

α

qβ
− N − p

p− 1

)
+

qβ

p− 1

(
u

r|u′|

)p−1

rp uq+1−p
E α

qβ
(r)

u
.

(88)

We introduce the following variable change

V (r) = r
α

qβ u(r), r > 0. (89)

It's easy to see by (35)that

r V q−pV ′(r) = rp uq+1−p
E α

qβ
(r)

u
. (90)

Then, by (88)

E′
α

qβ

(r)

u′
=

(
α

qβ
− N − p

p− 1

)
+

qβ

p− 1

(
u

r|u′|

)p−1

r V q−pV ′(r). (91)

Using L'Hopital's rule and proposition 3.8, we get

lim
r→+∞

E′
α

qβ

(r)

u′
= lim

r→+∞

E α

qβ
(r)

u
=

α

qβ
+
ru′

u
= 0.

(92)
Therefore by (91)

lim
r→+∞

rV q−pV ′(r) =

p− 1

qβ

(
N − p

p− 1
− α

qβ

)(
α

qβ

)p−1

. (93)

That is to say

lim
r→+∞

(
V q+1−p(r)
q+1−p

)′
(ln(r))′

=

p− 1

qβ

(
N − p

p− 1
− α

qβ

)(
α

qβ

)p−1

. (94)

Using L'Hopital's rule (because lim
r→+∞

V (r) = +∞),
we get

lim
r→+∞

V q+1−p(r)

ln(r)
=

p− 1

qβ
(q + 1− p)

(
N − p

p− 1
− α

qβ

)(
α

qβ

)p−1

.

(95)

The result follows and the proof is complete.

Theorem 4.4. Assume
α

β
< N and

α

qβ
>

p

q + 1− p
. Let u be a solution of problem (P ). Then

lim
r→+∞

r
p

q+1−pu(r) = L2 (96)

and

lim
r→+∞

r
p

q+1−p
+1u′(r) =

−p
q + 1− p

L2, (97)

where

L2 =

(p− 1)
(

p
q+1−p

)p−1 (
N−p
p−1 − p

q+1−p

)
α− qβ p

q+1−p


1

q+1−p

.

(98)
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Proof. As
α

β
< N and

α

qβ
>

p

q + 1− p
,

then
N − p

p− 1
>

p

q + 1− p
. First, we show that

E p

q+1−p
(r) > 0∀r > 0. Let r0 > 0 the first

zero of E p

q+1−p
(r). Then we have E p

q+1−p
(r) > 0

∀r ∈ [0, r0), E p

q+1−p
(r0) = 0 and E′

p

q+1−p

(r0) ≤ 0.
Therefore using (37)

(
qβ

p

q + 1− p
− α

)
+ (p− 1)

(
p

q + 1− p

)p−1

(
N − p

p− 1
− p

q + 1− p

)
up−q−1(r0)

rp0
≤ 0. (99)

Hence

r
p

q+1−p

0 u(r0) ≥ L2, (100)

Where L2 is given by (98). On the other hand, since
u(r) > 0, then integrating (15) on (0, r0), we obtain

rN−1
0 |u′|p−2u′(r0) + βrN0 u

q(r0) =

(βN − α)

r0∫
0

sN−1uq(s) ds. (101)

Therefore,

β
(
r

p

q+1−p

0 u(r0)
)q

= r
pq

q+1−p
−1

0 |u′|p−1(r0)+

(βN − α)r
pq

q+1−p
−N

0

r0∫
0

sN−1uq(s) ds.

(102)

As E p

q+1−p
(r) > 0 ∀r ∈ [0, r0) and E p

q+1−p
(r0) =

0, then
(
r

p

q+1−pu(r)
)′

> 0 ∀r ∈ (0, r0) and

|u′(r0)| =
p

q + 1− p

u(r0)

r0
. Then,

β
(
r

p

q+1−p

0 u(r0)
)q

≤(
p

q + 1− p

)p−1

r
pq

q+1−p
−pup−1(r0)+

(βN − α)r
pq

q+1−p
−N

0 r
pq

q+1−puq(r0)

r0∫
0

sN−1− pq

q+1−p ds.

(103)

Taking into account N >
pq

q + 1− p
, we obtain

β
(
r

p

q+1−p

0 u(r0)
)q

≤
(

p

q + 1− p

)p−1

r
p(p−1)

q+1−p up−1(r0)+

βN − α

N − pq
q+1−p

(
r

p

q+1−p

0 u(r0)
)q
.

(104)

Therefore

r
p

q+1−p

0 u(r0) ≤( p

q + 1− p

)p−1
 1

β − βN−α
N− pq

q+1−p

 1

q+1−p

= L2.

(105)

Hence by (100) and (105),

r
p

q+1−p

0 u(r0) = L2. (106)

As E p

q+1−p
(r0) = 0, then

r
p

q+1−p
+1

0 u′(r0) =
−p

q + 1− p
L2. (107)

Recalling the logarithmic change (9), v(t) =

r
p

q+1−pu(r), we obtain by (10), (11) and (12) and (13),
the system

v′(t) =
p

q + 1− p
v(t) + |w(t)|

2−p

p−1w(t)

w′(t) = −
(
N − p− p

q + 1− p
(p− 1)

)
w(t)−

αvq(t)− qβvq−1(t)|w(t)|
2−p

p−1w(t).
(108)

This system has a non trivial equilibrium

point

(
L2, −

(
p

q + 1− p
L2

)p−1
)

and ad-

mits a unique solution, but v(t0) = L2 and

w(t0) = −
(

p

q + 1− p
L2

)p−1

(because

h(t0) =
−p

q + 1− p
L2), where t0 = ln(r0),

then necessarily v(t) = L2 and w(t) =

−
(

p

q + 1− p
L2

)p−1

, therefore v′(t) = 0 and

by (67), E p

q+1−p
(r) = 0, ∀r > 0. This is a contra-

diction. We deduce that E p

q+1−p
(r) > 0 ∀r > 0 and

lim
r→+∞

r
p

q+1−pu(r) ∈]0,+∞]. That is,

|u′(r)| < p

q + 1− p

u(r)

r
, ∀r > 0.
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In the same way, by integrating (15) on (0, r) we
obtain r

p

q+1−pu(r) ≤ L2 ∀r > 0. Then,
lim

r→+∞
r

p

q+1−pu(r) = d ∈]0, L2]. We show that
d = L2. According to Proposition 3.10, since
v′(t) > 0 and lim

t→+∞
v(t) = d > 0, then

lim
t→+∞

h(t) =
−p

q + 1− p
d < 0. Therefore,

lim
t→+∞

w(t) = −
(

p

q + 1− p
L2

)p−1

and necessar-

ily lim
t→+∞

w′(t) = 0. Hence, letting t → +∞ in the
second equation of system (108), we get d = L2 and
the proof is complete.

5 Application to the parabolic
problem

In this section, we prove the existence of radial
strictly positive self-similar solution of the following
parabolic problem

(Q)

{
vt = ∆pv

m in RN × (0,+∞)

v(0, 1) = b

where p > 2, N ≥ 1, 0 < m <
1

p− 1
and b > 0.

Theorem 5.1. Assume 0 <
α

β
< N and

α

qβ
<

p

q + 1− p
. Then, for every b > 0, problem

(Q) admits a radial strictly positive self-similar so-
lution Ub(x, t) = t−αu

1

m (t−β|x|), where α =
β p− 1

1−m(p− 1)
and u is solution of problem (P ).

Moreover, there exists L(b) > 0 such that

lim
t→0+

Ub(x, t) = L(b)|x|
−α

β for each x ̸= 0.

(109)

Proof. The Existence and uniqueness of Ub follow
from Theorem 2.1 with b = aq and m =

1

q
. The

positivity follows easily from Theorem 4.1.
Put y = t−β|x| , then

|x|
α

βUb(x, t) = y
α

β uq(y).

According to Theorem 4.2, we have
lim

y→+∞
y

α

β uq(y) = Lq
1 > 0. Therefore, there

exists L(b) = Lq
1 > 0, such that

lim
t→0+

|x|
α

βUb(x, t) = lim
y→+∞

y
α

β uq(y) = L(b).

The proof is complete.
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